Higher-loop Resummation in QCD (F)APT Alexander P. Bakulev

Bogoliubov Lab. Theor. Phys., JINR (Dubna, Russia)

OUTLINE

- Intro: Asymptotic Series in Perturbative QFT
- APT and FAPT
- Resummation in APT and FAPT
- One-loop case
- Two-loop case
- Three-loop case
- Applications: Resummation for Adler function $D\left(Q^{2}\right)$
- Applications: Higgs decay $H^{0} \rightarrow b \bar{b}$
- Conclusions

Collaborators \& Publications

Collaborators:

S. V. Mikhailov JINR (Dubna)

D. V. Shirkov JINR (Dubna) JINR (Dubna)

N. G. Stefanis

RUB (Bochum)

Publications:

- A. B.\&Mikhailov - Solovtsov Memorial Seminar, Dubna, Jan. 17-18, 2008, Dubna: JINR (2008) pp. 119-133
- A. B. - Phys. Part. Nucl. 40 (2009) 715
- A. B., Mikhailov, Stefanis - JHEP 1006 (2010) 085
- A. B.\&Shirkov - ArXiv:1102.2380[hep-ph]
- A. B.\&Potapova - ArXiv:1108.6300[hep-ph]

Asymptotic Series

 in
Perturbative QFT

Strength and Weakness of Pert. QFT

A lot of successive pert. calculations in QM and QFT. Practically, it is synonym of Quantum Theory. Feynman diagrams became a symbol of QFT.

Nevertheless, power expansion of the quantum amplitude $C(\alpha)$ is not convergent.

Feynman Series $\sum c_{k} \alpha^{k}$ is not Convergent!

Strength and Weakness of Pert. QFT

A lot of successive pert. calculations in QM and QFT. Practically, it is synonym of Quantum Theory. Feynman diagrams became a symbol of QFT.

Nevertheless, power expansion of the quantum amplitude $C(\alpha)$ is not convergent.

Feynman Series $\sum c_{k} \alpha^{k}$ is not Convergent!

Due to

- Essential singularity at $\alpha=0$
- Factorial growth of coefficients $c_{k} \sim k$!

Singularity at $g=0$, factorial growth $c_{k} \sim k$!

For illustration, take the 0-dim analog $I(g)=\int_{-\infty}^{\infty} e^{-x^{2}-g x^{4}} d x$
Expanding it in power-in- g series:
$I(g) \sim \sum_{k=0}(-g)^{k} I_{k} \quad$ with $\quad I_{k}=\frac{\Gamma(2 k+1 / 2)}{\Gamma(k+1)} \rightarrow 2^{k} k!$

Singularity at $g=0$, factorial growth $c_{k} \sim k$!

For illustration, take the 0-dim analog $I(g)=\int_{-\infty}^{\infty} e^{-x^{2}-g x^{4}} d x$
Expanding it in power-in- g series:
$I(g) \sim \sum_{k=0}(-g)^{k} I_{k} \quad$ with $\quad I_{k}=\frac{\Gamma(2 k+1 / 2)}{\Gamma(k+1)} \rightarrow 2^{k} k!$
Meanwhile, $I(g)$ can be expressed via MacDonald function
$I(g)=\frac{1}{\sqrt{2 g}} e^{1 / 8 g} K_{1 / 4}\left(\frac{1}{8 g}\right)$
with known analytic properties in complex g plane.
It has an essential singularity $e^{-1 / 8 g}$ near the origin:

$$
I(g)=\sqrt{\pi}-\frac{g}{\sqrt{2 \pi}} \int_{0}^{\infty} \frac{d \gamma \exp (-1 / 4 \gamma)}{\gamma(g+\gamma)}
$$

Asymptotic Series and 'Practic. Convergence'

The Henry Poincaré (end of XIX) analysis of Asymptotic Series (AS) can be summed as follows:
AS can be used for obtaining quantitative information on expanded function.
$\uparrow f_{k}$
The error of approximating $F(g)$ by first K terms of expansion, $F_{K}(g)$,
$F(g) \rightarrow F_{K}(g)=\sum_{k \leq K} f_{k}(g)$ is
equal to the last detained term $f_{K}(g)$.
For $k \geq K+1$ truncation error starts to grow!

Asymptotic Series and 'Practic. Convergence'

The Henry Poincaré (end of XIX) analysis of Asymptotic Series (AS) can be summed as follows:
AS can be used for obtaining quantitative information on expanded function.
The error of approximating $F(g)$ by first K terms of expansion, $F_{K}(g)$,
$F(g) \rightarrow F_{K}(g)=\sum_{k \leq K} f_{k}(g)$
is equal to the last detained term $f_{K}(g)$.
For the power AS, $f_{k}(g)=f_{k} g^{k}$ with factorial growth $f_{k} \sim k$! absolute values of $f_{k}(g)$ cease to diminish at $k \sim 1 / g$.
This yields to the natural best possible accuracy of a given AS
(in contrast to convergent series!)

Asymptotic Series and 'Practic. Convergence'

$I(g)=\int_{-\infty}^{\infty} e^{-x^{2}-g x^{4}} d x \quad ?=? \quad \sum_{k \geq 0} I_{k}(-g)^{k}$

g	K	$(-g)^{K} I_{K}$	$(-g)^{K+1} I_{K+1}$	$\Delta_{K} I(g)$
0.07	7	$-0.04(2 \%)$	$+0.07(4.4 \%)$	1.4%
0.07	9	$-0.17(10 \%)$	$+0.42(25 \%)$	7%

Asymptotic Series and 'Practic. Convergence'

$I(g)=\int_{-\infty}^{\infty} e^{-x^{2}-g x^{4}} d x \quad ?=? \quad \sum_{k \geq 0} I_{k}(-g)^{k}$

g	K	$(-g)^{K} I_{K}$	$(-g)^{K+1} I_{K+1}$	$\Delta_{K} I(g)$
0.07	7	$-0.04(2 \%)$	$+0.07(4.4 \%)$	1.4%
0.07	9	$-0.17(10 \%)$	$+0.42(25 \%)$	7%
0.15	2	$+0.13(8 \%)$	$-0.16(10 \%)$	4%
0.15	4	$+0.30(18 \%)$	$-0.72(44 \%)$	12%

Asymptotic Series and 'Practic. Convergence'

$I(g)=\int_{-\infty}^{\infty} e^{-x^{2}-g x^{4}} d x \quad ?=? \quad \sum_{k \geq 0} I_{k}(-g)^{k}$

g	K	$(-g)^{K} I_{K}$	$(-g)^{K+1} I_{K+1}$	$\Delta_{K} I(g)$
0.07	7	$-0.04(2 \%)$	$+0.07(4.4 \%)$	1.4%
0.07	9	$-0.17(10 \%)$	$+0.42(25 \%)$	7%
0.15	2	$+0.13(8 \%)$	$-0.16(10 \%)$	4%
0.15	4	$+0.30(18 \%)$	$-0.72(44 \%)$	12%

Thus, $K_{*}(g=0.07)=7$ and $K_{*}(g=0.15)=2$. Not possible to get the 1% accuracy at $g=0.15$ for $I(g)$.

Asymptotic Series and 'Practic. Convergence'

$$
I(g)=\int_{-\infty}^{\infty} e^{-x^{2}-g x^{4}} d x \quad ?=? \quad \sum_{k \geq 0} I_{k}(-g)^{k}
$$

Thus, $K_{*}(g=0.07)=7$ and $K_{*}(g=0.15)=2$.
Not possible to get the 1% accuracy at $g=0.15$ for $I(g)$.
We made conclusions "where to stop" using exact expression
$I(g)=\frac{1}{\sqrt{2 g}} e^{1 / 8 g} K_{1 / 4}\left(\frac{1}{8 g}\right)$

Asymptotic Series and 'Practic. Convergence'

$$
I(g)=\int_{-\infty}^{\infty} e^{-x^{2}-g x^{4}} d x \quad ?=? \quad \sum_{k \geq 0} I_{k}(-g)^{k}
$$

Thus, $K_{*}(g=0.07)=7$ and $K_{*}(g=0.15)=2$.
Not possible to get the 1% accuracy at $g=0.15$ for $I(g)$.
We made conclusions "where to stop" using exact expression
$I(g)=\frac{1}{\sqrt{2 g}} e^{1 / 8 g} K_{1 / 4}\left(\frac{1}{8 g}\right)$
What to do in QCD?

Asymptotic Series and 'Practic. Convergence'

$$
I(g)=\int_{-\infty}^{\infty} e^{-x^{2}-g x^{4}} d x \quad ?=? \quad \sum_{k \geq 0} I_{k}(-g)^{k}
$$

Thus, $K_{*}(g=0.07)=7$ and $K_{*}(g=0.15)=2$.
Not possible to get the 1% accuracy at $g=0.15$ for $I(g)$.
We made conclusions "where to stop" using exact expression
$I(g)=\frac{1}{\sqrt{2 g}} e^{1 / 8 g} K_{1 / 4}\left(\frac{1}{8 g}\right)$
What to do in QCD?
APT approach delivers a solution!

Analytic Perturbation Theory

in

QCD

Analytic Perturb Theory (APT): Preamble

1st step: Improving PT by RG Method (Bogoliubov-Shirkov [1955-56]).
In QFT, RG result obeys unphysical singularity.

Analytic Perturb Theory (APT): Preamble

1st step: Improving PT by RG Method (Bogoliubov-Shirkov [1955-56]).
In QFT, RG result obeys unphysical singularity.
2nd step: Improving PT solution by the analyticity imperative, based on the causality condition
(Bogoliubov-Logunov-Shirkov [1959], Radyushkin and Krasnikov\&Pivovarov [1982]).
Its minimal (without extra parameters) version was devised by Jones\&Solovtsov\&Shirkov [1996-2006] and is known as Analytic Perturbation Theory.

Analytic Perturb Theory (APT): Preamble

1st step: Improving PT by RG Method (Bogoliubov-Shirkov [1955-56]).
In QFT, RG result obeys unphysical singularity.
2nd step: Improving PT solution by the analyticity imperative, based on the causality condition
(Bogoliubov-Logunov-Shirkov [1959], Radyushkin and Krasnikov\&Pivovarov [1982]).
Its minimal (without extra parameters) version was devised by Jones\&Solovtsov\&Shirkov [1996-2006] and is known as Analytic Perturbation Theory.

3rd step: Generalizing APT by including fractional powers of coupling and its products with logarithms due to principle of analytization "as a whole" (Karanikas-Stefanis, [2001]) in (A. B.\&Mikhailov\&Stefanis [2005-2009]) \Rightarrow Fractional APT.

Basics of pQCD

- coupling $\alpha_{s}\left(\mu^{2}\right)=\left(4 \pi / b_{0}\right) a_{s}[L]$ with $L=\ln \left(\mu^{2} / \Lambda^{2}\right)$
- RG equation $\frac{d a_{s}[L]}{d L}=-a_{s}^{2}-c_{1} a_{s}^{3}-\ldots$
- 1-loop solution generates Landau pole singularity: $a_{s}[L]=1 / L$
- 2-loop solution generates square-root singularity: $a_{s}[L] \sim 1 / \sqrt{L+c_{1} \ln c_{1}}$
- PT series: $D[L]=1+d_{1} a_{s}[L]+d_{2} a_{s}^{2}[L]+\ldots$

Basics of APT

- Different effective couplings in Minkowskian (R\&K\&P[1982]) and Euclidean (S\&S[1996]) regions.

Basics of APT

- Different effective couplings in Minkowskian (R\&K\&P[1982]) and Euclidean (S\&S[1996]) regions.
- Based on $\begin{array}{r}\text { RG } \\ \Downarrow\end{array}$

UV asymptotics

Spectrality

Basics of APT

- Different effective couplings in

Minkowskian (R\&K\&P[1982]) and Euclidean (S\&S[1996]) regions.

- Based on $\begin{array}{r}\text { RG } \\ \Downarrow\end{array}$

UV asymptotics

Spectrality

- Euclidean: $-q^{2}=Q^{2}, L=\ln Q^{2} / \Lambda^{2},\left\{\mathcal{A}_{n}(L)\right\}_{n \in \mathbb{N}}$
- Minkowskian: $q^{2}=s, L_{s}=\ln s / \Lambda^{2}, \quad\left\{\mathfrak{A}_{n}\left(L_{s}\right)\right\}_{n \in \mathbb{N}}$

Basics of APT

- Different effective couplings in

Minkowskian (R\&K\&P[1982]) and Euclidean (S\&S[1996]) regions.

- Based on $\begin{array}{r}\mathrm{RG} \\ \Downarrow\end{array}$

UV asymptotics

Causality

- Euclidean: $-q^{2}=Q^{2}, L=\ln Q^{2} / \Lambda^{2},\left\{\mathcal{A}_{n}(L)\right\}_{n \in \mathbb{N}}$
- Minkowskian: $q^{2}=s, L_{s}=\ln s / \Lambda^{2}, \quad\left\{\mathfrak{A}_{n}\left(L_{s}\right)\right\}_{n \in \mathbb{N}}$
- PT

$$
\begin{aligned}
\sum_{m} d_{m} a_{s}^{m}\left(Q^{2}\right) & \Rightarrow \sum_{m} d_{m} \mathcal{A}_{m}\left(Q^{2}\right) \quad \mathrm{APT} \\
m \text { is power } & \Rightarrow m \text { is index }
\end{aligned}
$$

Spectral representation

By analytization we mean "Källen-Lehmann" representation

$$
\left[f\left(Q^{2}\right)\right]_{\mathrm{an}}=\int_{0}^{\infty} \frac{\rho_{f}(\sigma)}{\sigma+Q^{2}-i \epsilon} d \sigma
$$

Then (note here pole remover):

$$
\begin{aligned}
\rho(\sigma) & =\frac{1}{L_{\sigma}^{2}+\pi^{2}} \\
\mathcal{A}_{1}[L] & =\int_{0}^{\infty} \frac{\rho(\sigma)}{\sigma+Q^{2}} d \sigma=\frac{1}{L}-\frac{1}{e^{L}-1} \\
\mathfrak{A}_{1}\left[L_{s}\right] & =\int_{s}^{\infty} \frac{\rho(\sigma)}{\sigma} d \sigma=\frac{1}{\pi} \arccos \frac{L_{s}}{\sqrt{\pi^{2}+L_{s}^{2}}}
\end{aligned}
$$

Spectral representation

By analytization we mean "Källen-Lehmann" representation

$$
\left[f\left(Q^{2}\right)\right]_{\mathrm{an}}=\int_{0}^{\infty} \frac{\rho_{f}(\sigma)}{\sigma+Q^{2}-i \epsilon} d \sigma
$$

with spectral density $\rho_{f}(\sigma)=\operatorname{Im}[f(-\sigma)] / \pi$. Then:

$$
\begin{gathered}
\mathcal{A}_{n}[L]=\int_{0}^{\infty} \frac{\rho_{n}(\sigma)}{\sigma+Q^{2}} d \sigma=\frac{1}{(n-1)!}\left(-\frac{d}{d L}\right)^{n-1} \mathcal{A}_{1}[L] \\
\mathfrak{A}_{n}\left[L_{s}\right]=\int_{s}^{\infty} \frac{\rho_{n}(\sigma)}{\sigma} d \sigma=\frac{1}{(n-1)!}\left(-\frac{d}{d L_{s}}\right)^{n-1} \mathfrak{A}_{1}\left[L_{s}\right] \\
a_{s}^{n}[L]=\frac{1}{(n-1)!}\left(-\frac{d}{d L}\right)^{n-1} a_{s}[L]
\end{gathered}
$$

APT graphics: Distorting mirror

First, couplings: $\quad \mathfrak{A}_{1}(s)$ and $\quad \mathcal{A}_{1}\left(Q^{2}\right)$

APT graphics: Distorting mirror

Second, square-images: $\mathfrak{A}_{2}(s)$ and $\mathcal{A}_{2}\left(Q^{2}\right)$

Need

to use

Fractional APT

Problems of APT

In standard QCD PT we have not only power series
$\boldsymbol{F}[L]=\sum_{m} f_{m} a_{s}^{m}[L]$, but also:

- Factorization $\rightarrow\left(a_{s}[L]\right)^{n} L^{m}$
\Rightarrow analytization "as a whole" Karanikas\&Stefanis [2001]

Problems of APT

In standard QCD PT we have not only power series
$F[L]=\sum_{m} f_{m} a_{s}^{m}[L]$, but also:

- Factorization $\rightarrow\left(a_{s}[L]\right)^{n} L^{m}$
\Rightarrow analytization "as a whole" Karanikas\&Stefanis [2001]
- RG-improvement to account for higher-orders \rightarrow

$$
Z[L]=\exp \left\{\int^{a_{s}[L]} \frac{\gamma(a)}{\beta(a)} d a\right\} \xrightarrow{\text {-loop }}\left[a_{s}[L]\right]^{\gamma_{0} /\left(2 \beta_{0}\right)}
$$

Problems of APT

In standard QCD PT we have not only power series
$\boldsymbol{F}[L]=\sum_{m} f_{m} a_{s}^{m}[L]$, but also:

- Factorization $\rightarrow\left(a_{s}[L]\right)^{n} L^{m}$
\Rightarrow analytization "as a whole" Karanikas\&Stefanis [2001]
- RG-improvement to account for higher-orders \rightarrow

$$
Z[L]=\exp \left\{\int^{a_{s}[L]} \frac{\gamma(a)}{\beta(a)} d a\right\} \xrightarrow{\text {-loop }}\left[a_{s}[L]\right]^{\gamma_{0} /\left(2 \beta_{0}\right)}
$$

- Two-loop case $\rightarrow\left(a_{s}\right)^{\nu} \ln \left(a_{s}\right)$

New functions: $\left(a_{s}\right)^{\nu},\left(a_{s}\right)^{\nu} \ln \left(a_{s}\right),\left(a_{s}\right)^{\nu} L^{m}, \ldots$

Constructing one-Ioop FAPT

In one-loop APT we have a very nice recurrence relation

$$
\mathcal{A}_{n}[L]=\frac{1}{(n-1)!}\left(-\frac{d}{d L}\right)^{n-1} \mathcal{A}_{1}[L]
$$

and the same in Minkowski domain

$$
\mathfrak{A}_{n}[L]=\frac{1}{(n-1)!}\left(-\frac{d}{d L}\right)^{n-1} \mathfrak{A}_{1}[L] .
$$

We can use it to construct FAPT .

FAPT(E): Properties of $\mathcal{A}_{\nu}[L]$

First, Euclidean coupling $\left(L=L\left(Q^{2}\right)\right)$:

$$
\mathcal{A}_{\nu}[L]=\frac{1}{L^{\nu}}-\frac{F\left(e^{-L}, 1-\nu\right)}{\Gamma(\nu)}
$$

Here $F(z, \nu)$ is reduced Lerch transcendent. function. It is analytic function in ν.

FAPT(E): Properties of $\mathcal{A}_{\nu}[L]$

First, Euclidean coupling $\left(L=L\left(Q^{2}\right)\right.$):

$$
\mathcal{A}_{\nu}[L]=\frac{1}{L^{\nu}}-\frac{F\left(e^{-L}, 1-\nu\right)}{\Gamma(\nu)}
$$

Here $F(z, \nu)$ is reduced Lerch transcendent. function. It is analytic function in ν. Properties:

- $\mathcal{A}_{0}[L]=1$;
- $\mathcal{A}_{-m}[L]=L^{m}$ for $m \in \mathbb{N}$;
- $\mathcal{A}_{m}[L]=(-1)^{m} \mathcal{A}_{m}[-L]$ for $m \geq 2, m \in \mathbb{N}$;
- $\mathcal{A}_{m}[\pm \infty]=0$ for $m \geq 2, m \in \mathbb{N}$;

FAPT(M): Properties of $\mathfrak{A}_{\nu}[L]$

Now, Minkowskian coupling $(L=L(s))$:

$$
\mathfrak{A}_{\nu}[L]=\frac{\sin \left[(\nu-1) \arccos \left(L / \sqrt{\pi^{2}+L^{2}}\right)\right]}{\pi(\nu-1)\left(\pi^{2}+L^{2}\right)^{(\nu-1) / 2}}
$$

Here we need only elementary functions.

FAPT(M): Properties of $\mathfrak{A}_{\nu}[L]$

Now, Minkowskian coupling $(L=L(s))$:

$$
\mathfrak{A}_{\nu}[L]=\frac{\sin \left[(\nu-1) \arccos \left(L / \sqrt{\pi^{2}+L^{2}}\right)\right]}{\pi(\nu-1)\left(\pi^{2}+L^{2}\right)^{(\nu-1) / 2}}
$$

Here we need only elementary functions. Properties:

- $\mathfrak{A}_{0}[L]=1$;
- $\mathfrak{A}_{-1}[L]=L$;
- $\mathfrak{A}_{-2}[L]=L^{2}-\frac{\pi^{2}}{3}, \quad \mathfrak{A}_{-3}[L]=L\left(L^{2}-\pi^{2}\right), \ldots$;
- $\mathfrak{A}_{m}[L]=(-1)^{m} \mathfrak{A}_{m}[-L]$ for $m \geq 2, m \in \mathbb{N}$;
- $\mathfrak{A}_{m}[\pm \infty]=0$ for $m \geq 2, m \in \mathbb{N}$

FAPT(E): Graphics of $\mathcal{A}_{\nu}[L]$ vs. L

$$
\mathcal{A}_{\nu}[L]=\frac{1}{L^{\nu}}-\frac{F\left(e^{-L}, 1-\nu\right)}{\Gamma(\nu)}
$$

Graphics for fractional $\nu \in[2,3]$:

FAPT(M): Graphics of $\mathfrak{A}_{\nu}[L]$ vs. L

$$
\mathfrak{A}_{\nu}[L]=\frac{\sin \left[(\nu-1) \arccos \left(L / \sqrt{\pi^{2}+L^{2}}\right)\right]}{\pi(\nu-1)\left(\pi^{2}+L^{2}\right)^{(\nu-1) / 2}}
$$

Compare with graphics in Minkowskian region :

FAPT(E): Comparing \mathcal{A}_{ν} with $\left(\mathcal{A}_{1}\right)^{\nu}$

$$
\Delta_{\mathrm{E}}(L, \nu)=\frac{\mathcal{A}_{\nu}[\boldsymbol{L}]-\left(\mathcal{A}_{1}[\boldsymbol{L}]\right)^{\nu}}{\mathcal{A}_{\nu}[\boldsymbol{L}]}
$$

Graphics for fractional $\nu=0.62,1.62$ and 2.62:

The larger ν is — the more important FAPT becomes!

FAPT(M): Comparing \mathfrak{A}_{ν} with $\left(\mathfrak{A}_{1}\right)^{\nu}$

$$
\Delta_{\mathbf{M}}(\boldsymbol{L}, \nu)=\frac{\mathfrak{A}_{\nu}[\boldsymbol{L}]-\left(\mathfrak{A}_{1}[L]\right)^{\nu}}{\mathfrak{A}_{\nu}[\boldsymbol{L}]}
$$

Minkowskian graphics for $\nu=0.62,1.62$ and 2.62:

The larger ν is - the more important FAPT becomes!

Resummation

in
 one-loop APT and FAPT

Generating function for coefficients

Consider series $\mathcal{D}[L]=d_{0}+\sum_{n=1}^{\infty} d_{n} \mathcal{A}_{n}[L]$

Generating function for coefficients

Consider series $\quad \mathcal{D}[L]=d_{0}+\sum_{n=1}^{\infty} d_{n} \mathcal{A}_{n}[L]$
Let exists the generating function $P(t)$ for coefficients:

$$
d_{n}=d_{1} \int_{0}^{\infty} P(t) t^{n-1} d t \text { with } \int_{0}^{\infty} P(t) d t=1
$$

We define a shorthand notation

$$
\langle\langle f(t)\rangle\rangle_{P(t)} \equiv \int_{0}^{\infty} f(t) P(t) d t .
$$

Then coefficients $d_{n}=d_{1}\left\langle\left\langle t^{n-1}\right\rangle\right\rangle_{P(t)}$.

Generating function for coefficients

Consider series $\quad \mathcal{D}[L]=d_{0}+d_{1} \sum_{n=1}^{\infty}\left\langle\left\langle t^{n-1}\right\rangle\right\rangle_{P(t)} \mathcal{A}_{n}[L]$
We have one-loop recurrence relation:

$$
\mathcal{A}_{n+1}[L]=\frac{1}{\Gamma(n+1)}\left(-\frac{d}{d L}\right)^{n} \mathcal{A}_{1}[L] .
$$

Generating function for coefficients

Consider series $\mathcal{D}[L]=d_{0}+d_{1} \sum_{n=1}^{\infty}\left\langle\left\langle t^{n-1}\right\rangle\right\rangle_{P(t)} \mathcal{A}_{n}[L]$
We have one-loop recurrence relation:

$$
\mathcal{A}_{n+1}[L]=\frac{1}{\Gamma(n+1)}\left(-\frac{d}{d L}\right)^{n} \mathcal{A}_{1}[L]
$$

Result:

$$
\mathcal{D}[L]=d_{0}+d_{1}\left\langle\left\langle\mathcal{A}_{1}[L-t]\right\rangle\right\rangle_{P(t)}
$$

Generating function for coefficients

Consider series $\quad \mathcal{D}[L]=d_{0}+d_{1} \sum_{n=1}^{\infty}\left\langle\left\langle t^{n-1}\right\rangle\right\rangle_{P(t)} \mathcal{A}_{n}[L]$
We have one-loop recurrence relation:

$$
\mathcal{A}_{n+1}[L]=\frac{1}{\Gamma(n+1)}\left(-\frac{d}{d L}\right)^{n} \mathcal{A}_{1}[L] .
$$

Result:

$$
\mathcal{D}[L]=d_{0}+d_{1}\left\langle\left\langle\mathcal{A}_{1}[L-t]\right\rangle\right\rangle_{P(t)}
$$

and for Minkowski region:

$$
\mathcal{R}[L]=d_{0}+d_{1}\left\langle\left\langle\mathfrak{A}_{1}[L-t]\right\rangle\right\rangle_{P(t)}
$$

Models for perturbative coefficients

Coefficients d_{n} of the PT series:

Model $P(t)$	d_{n}
$c \delta(t-c)$	c^{n}

Models for perturbative coefficients

Coefficients d_{n} of the PT series:

Model $P(t)$	d_{n}
$c \delta(t-c)$	c^{n}
$\theta(t<1)$	$\frac{1}{n}$

Models for perturbative coefficients

Coefficients d_{n} of the PT series:

Model $P(t)$	d_{n}
$c \delta(t-c)$	c^{n}
$\theta(t<1)$	$\frac{1}{n}$
$(t / c)^{\gamma+1} e^{-t / c}$	$n^{\gamma} c^{n} \Gamma(n+1)$

Resummation in one-loop FAPT

Consider series $\mathcal{R}_{\nu}[L]=d_{0} \mathfrak{A}_{\nu}[L]+\sum_{n=1}^{\infty} d_{n} \mathfrak{A}_{n+\nu}[L]$
or

$$
\mathcal{D}_{\nu}[L]=d_{0} \mathcal{A}_{\nu}[L]+\sum_{n=1}^{\infty} d_{n} \mathcal{A}_{n+\nu}[L]
$$

with coefficients $d_{n}=d_{1}\left\langle\left\langle t^{n-1}\right\rangle\right\rangle_{P(t)}$.
Result:

$$
\begin{aligned}
\mathcal{R}_{\nu}[L] & =d_{0} \mathfrak{A}_{\nu}[L]+d_{1}\left\langle\left\langle\mathfrak{A}_{1+\nu}[L-t]\right\rangle\right\rangle_{P_{\nu}(t)} \\
\mathcal{D}_{\nu}[L] & =d_{0} \mathcal{A}_{\nu}[L]+d_{1}\left\langle\left\langle\mathcal{A}_{1+\nu}[L-t]\right\rangle\right\rangle_{P_{\nu}(t)}
\end{aligned}
$$

where $P_{\nu}(t)=\int_{0}^{1} P\left(\frac{t}{1-z}\right) \nu z^{\nu-1} \frac{d z}{1-z}$.

Resummation

in
 two- and three-loop FAPT

Resummation in two-loop FAPT

Consider series $\quad \mathcal{S}_{\nu}[L]=\sum_{n=1}^{\infty}\left\langle\left\langle t^{n-1}\right\rangle\right\rangle_{P(t)} \mathcal{F}_{n+\nu}[L]$.
Here $\mathcal{F}_{\nu}[L]=\mathcal{A}_{\nu}^{(2)}[L]$ or $\mathfrak{A}_{\nu}^{(2)}[L]$ (or $\rho_{\nu}^{(2)}[L]$ - for global).

Resummation in two-loop FAPT

Consider series $\quad \mathcal{S}_{\nu}[L]=\sum_{n=1}^{\infty}\left\langle\left\langle t^{n-1}\right\rangle\right\rangle_{P(t)} \mathcal{F}_{n+\nu}[L]$.
Here $\mathcal{F}_{\nu}[L]=\mathcal{A}_{\nu}^{(2)}[L]$ or $\mathfrak{A}_{\nu}^{(2)}[L]$ (or $\rho_{\nu}^{(2)}[L]$ - for global).
We have two-loop recurrence relation ($c_{1}=b_{1} / b_{0}^{2}$):

$$
-\frac{1}{n+\nu} \frac{d}{d L} \mathcal{F}_{n+\nu}[L]=\mathcal{F}_{n+1+\nu}[L]+c_{1} \mathcal{F}_{n+2+\nu}[L] .
$$

Resummation in two-loop FAPT

Consider series $\quad \mathcal{S}_{\nu}[\boldsymbol{L}]=\sum_{n=1}^{\infty}\left\langle\left\langle t^{n-1}\right\rangle\right\rangle_{P(t)} \mathcal{F}_{n+\nu}[\boldsymbol{L}]$.
Here $\mathcal{F}_{\nu}[L]=\mathcal{A}_{\nu}^{(2)}[L]$ or $\mathfrak{A}_{\nu}^{(2)}[L]$ (or $\rho_{\nu}^{(2)}[L]$ — for global).
We have two-loop recurrence relation ($c_{1}=b_{1} / b_{0}^{2}$):

$$
-\frac{1}{n+\nu} \frac{d}{d L} \mathcal{F}_{n+\nu}[L]=\mathcal{F}_{n+1+\nu}[L]+c_{1} \mathcal{F}_{n+2+\nu}[L]
$$

In order to resum our series we need to define the two-loop
time $\tau_{2}(t)=t-c_{1} \ln \left[1+\frac{t}{c_{1}}\right]$ with $\frac{d \tau_{2}(t)}{d t}=\frac{1}{1+c_{1} / t}$
to be compared with standard two-loop evolution time $\tau_{(2)}(t)$
with $\frac{d t}{d \tau_{(2)}(t)}=\frac{1}{1+c_{1} / \tau_{(2)}(t)}$

Resummation in two-loop FAPT

Consider series $\mathcal{S}_{\nu}[L]=\sum_{n=1}^{\infty}\left\langle\left\langle t^{n-1}\right\rangle\right\rangle_{P(t)} \mathcal{F}_{n+\nu}[L]$.
Here $\mathcal{F}_{\nu}[L]=\mathcal{A}_{\nu}^{(2)}[L]$ or $\mathfrak{A}_{\nu}^{(2)}[L]$ (or $\rho_{\nu}^{(2)}[L]$ — for global).
We have two-loop recurrence relation ($c_{1}=b_{1} / b_{0}^{2}$):

$$
-\frac{1}{n+\nu} \frac{d}{d L} \mathcal{F}_{n+\nu}[L]=\mathcal{F}_{n+1+\nu}[L]+c_{1} \mathcal{F}_{n+2+\nu}[L]
$$

Result (with $\tau_{2}(t)=t-c_{1} \ln \left(1+t / c_{1}\right)$):

$$
\begin{gathered}
\mathcal{S}[L]=\left\langle\left\langle\mathcal{F}_{1+\nu}[L]-\frac{t^{2}}{c_{1}+t} \int_{0}^{1} z^{\nu} d z \dot{\mathcal{F}}_{1+\nu}\left[L+\tau_{2}(t z)-\tau_{2}(t)\right]\right.\right. \\
\left.\left.+\frac{c_{1} t}{c_{1}+t}\left\{\mathcal{F}_{2+\nu}[L]-\int_{0}^{1} d z \frac{t^{2} z^{\nu+1}}{c_{1}+t z} \dot{\mathcal{F}}_{2+\nu}\left[L+\tau_{2}(t z)-\tau_{2}(t)\right]\right\}\right\rangle\right\rangle_{P(t)}
\end{gathered}
$$

Resummation in three-Ioop FAPT

Consider series $\quad \mathcal{S}_{\nu}[L]=\sum_{n=1}^{\infty}\left\langle\left\langle t^{n-1}\right\rangle\right\rangle_{P(t)} \mathcal{F}_{n+\nu}[L]$.
Here $\mathcal{F}_{\nu}[L]=\mathcal{A}_{\nu}^{(2)}[L]$ or $\mathfrak{A}_{\nu}^{(2)}[L]$ (or $\rho_{\nu}^{(2)}[L]$ — for global).

Resummation in three-Ioop FAPT

Consider series $\quad \mathcal{S}_{\nu}[\boldsymbol{L}]=\sum_{n=1}^{\infty}\left\langle\left\langle t^{n-1}\right\rangle\right\rangle_{P(t)} \mathcal{F}_{n+\nu}[\boldsymbol{L}]$.
Here $\mathcal{F}_{\nu}[L]=\mathcal{A}_{\nu}^{(2)}[L]$ or $\mathfrak{A}_{\nu}^{(2)}[L]$ (or $\rho_{\nu}^{(2)}[L]$ - for global).
We have three-loop recurrence relation ($c_{2}=b_{2} / b_{0}^{3}$):

$$
\frac{-d \mathcal{F}_{n+\nu}[L]}{(n+\nu) d L}=\mathcal{F}_{n+1+\nu}[L]+c_{1} \mathcal{F}_{n+2+\nu}[L]+c_{2} \mathcal{F}_{n+3+\nu}[L]
$$

Resummation in three-Ioop FAPT

Consider series $\quad \mathcal{S}_{\nu}[\boldsymbol{L}]=\sum_{n=1}^{\infty}\left\langle\left\langle t^{n-1}\right\rangle\right\rangle_{P(t)} \mathcal{F}_{n+\nu}[\boldsymbol{L}]$.
Here $\mathcal{F}_{\nu}[L]=\mathcal{A}_{\nu}^{(2)}[L]$ or $\mathfrak{A}_{\nu}^{(2)}[L]$ (or $\rho_{\nu}^{(2)}[L]$ - for global).
We have three-loop recurrence relation ($c_{2}=b_{2} / b_{0}^{3}$):

$$
\frac{-d \mathcal{F}_{n+\nu}[L]}{(n+\nu) d L}=\mathcal{F}_{n+1+\nu}[L]+c_{1} \mathcal{F}_{n+2+\nu}[L]+c_{2} \mathcal{F}_{n+3+\nu}[L]
$$

Now, to resum our series, we need to define the three-loop
time $\tau_{3}(t)$ with $\frac{d \tau_{3}(t)}{d t}=\frac{1}{1+\left(c_{1} / t\right)+c_{2} / t^{2}}$
to be compared with standard three-loop evolution time $\tau_{(3)}(t)$
with $\frac{d t}{d \tau_{(3)}(t)}=\frac{1}{1+\left(c_{1} / \tau_{(3)}(t)\right)+c_{2} / \tau_{(3)}(t)^{2}}$

Resummation in three-Ioop FAPT

Consider series $\quad \mathcal{S}_{\nu}[L]=\sum_{n=1}^{\infty}\left\langle\left\langle t^{n-1}\right\rangle\right\rangle_{P(t)} \mathcal{F}_{n+\nu}[L]$.
Here $\mathcal{F}_{\nu}[L]=\mathcal{A}_{\nu}^{(2)}[L]$ or $\mathfrak{A}_{\nu}^{(2)}[L]$ (or $\rho_{\nu}^{(2)}[L]$ - for global).
We have three-loop recurrence relation ($c_{2}=b_{2} / b_{0}^{3}$):

$$
\frac{-d \mathcal{F}_{n+\nu}[L]}{(n+\nu) d L}=\mathcal{F}_{n+1+\nu}[L]+c_{1} \mathcal{F}_{n+2+\nu}[L]+c_{2} \mathcal{F}_{n+3+\nu}[L]
$$

Result ($\left.\left.L_{z, t} \equiv L+\tau_{3}(t z)-\tau_{3}(t)\right]\right)$:

$$
\begin{aligned}
& \mathcal{S}[L]=\left\langle\left\langle\mathcal{F}_{1+\nu}[L]+t \mathcal{F}_{2+\nu}[L]-\frac{t^{2}}{t^{2}+c_{1} t+c_{2}} \int_{0}^{1} z^{\nu} d z\left\{t \dot{\mathcal{F}}_{1+\nu}\left[L_{z, t}\right]\right.\right.\right. \\
& \left.\left.\left.\quad+z t^{2} \dot{\mathcal{F}}_{2+\nu}[L z, t]+(\nu+1) t \mathcal{F}_{2+\nu}[L z, t]-\frac{c_{2} \nu}{z} \mathcal{F}_{3+\nu}[L z, t]\right\}\right\rangle\right\rangle_{P(t)}
\end{aligned}
$$

Resummation

 for
Adler function $D\left(Q^{2}\right)$

Adler function $D\left(Q^{2}\right)$ in vector channel

Adler function $D\left(Q^{2}\right)$ can be expressed in QCD by means of the correlator of quark vector currents

$$
\Pi_{\mathrm{V}}\left(Q^{2}\right)=\frac{(4 \pi)^{2}}{3 q^{2}} i \int d x e^{i q x}\langle 0| T\left[J_{\mu}(x) J^{\mu}(0)\right]|0\rangle
$$

in terms of discontinuity of its imaginary part

$$
R_{\mathrm{V}}(s)=\frac{1}{\pi} \operatorname{Im} \Pi_{\mathrm{V}}(-s-i \epsilon)
$$

so that

$$
D\left(Q^{2}\right)=Q^{2} \int_{0}^{\infty} \frac{R_{\mathrm{V}}(\sigma)}{\left(\sigma+Q^{2}\right)^{2}} d \sigma .
$$

APT analysis of $D\left(Q^{2}\right)$ and $R_{V}(s)$

QCD PT gives us

$$
D\left(Q^{2}\right)=1+\sum_{m>0} \frac{d_{m}}{\pi^{m}}\left(\alpha_{s}\left(Q^{2}\right)\right)^{m}
$$

APT analysis of $D\left(Q^{2}\right)$ and $R_{V}(s)$

QCD PT gives us

$$
D\left(Q^{2}\right)=1+\sum_{m>0} \frac{d_{m}}{\pi^{m}}\left(\alpha_{s}\left(Q^{2}\right)\right)^{m}
$$

In APT (E) we obtain

$$
\mathcal{D}_{N}\left(Q^{2}\right)=1+\sum_{m>0}^{N} \frac{d_{m}}{\pi^{m}} \mathcal{A}_{m}^{\mathrm{glob}}\left(Q^{2}\right)
$$

APT analysis of $D\left(Q^{2}\right)$ and $R_{V}(s)$

QCD PT gives us

$$
D\left(Q^{2}\right)=1+\sum_{m>0} \frac{d_{m}}{\pi^{m}}\left(\alpha_{s}\left(Q^{2}\right)\right)^{m}
$$

In APT (E) we obtain

$$
\mathcal{D}_{N}\left(Q^{2}\right)=1+\sum_{m>0}^{N} \frac{d_{m}}{\pi^{m}} \mathcal{A}_{m}^{\mathrm{glob}}\left(Q^{2}\right)
$$

and in APT (M)

$$
\mathcal{R}_{\mathrm{V} ; N}(s)=1+\sum_{m>0}^{N} \frac{d_{m}}{\pi^{m}} \mathfrak{A}_{m}^{\mathrm{glob}}(s)
$$

Model for perturbative coefficients

Coefficients d_{m} of the PT series:

Model	d_{1}	d_{2}	d_{3}	d_{4}	d_{5}
pQCD with $N_{f}=4$	1	1.52	2.59		-

Model for perturbative coefficients

Coefficients d_{m} of the PT series:

Model	d_{1}	d_{2}	d_{3}	d_{4}	d_{5}
pQCD with $N_{f}=4$	1	1.52	2.59		-
$c=3.467, \beta=1.325$	1	1.50	2.62		

We use model $\tilde{d}_{n}^{\text {mod }}=\frac{c^{n-1}\left(\beta^{n+1}-n\right)}{\beta^{2}-1} \Gamma(n)$
with parameters β and c estimated by known \tilde{d}_{n}
that possesses the Lipatov asymptotics $\tilde{d}_{n}^{\bmod } \sim b^{n} n$! at $n \gg 1$.

Model for perturbative coefficients

Coefficients d_{m} of the PT series:

Model	d_{1}	d_{2}	d_{3}	d_{4}	d_{5}
pQCD with $N_{f}=4$	1	1.52	2.59	27.4	-
$c=3.467, \beta=1.325$	1	1.50	2.62	27.8	

We use model $\tilde{d}_{n}^{\text {mod }}=\frac{c^{n-1}\left(\beta^{n+1}-n\right)}{\beta^{2}-1} \Gamma(n)$
with parameters β and c estimated by known \tilde{d}_{n}
that possesses the Lipatov asymptotics $\tilde{d}_{n}^{\text {mod }} \sim b^{n} n!$ at $n \gg 1$.
Improving the parameters - like in Kalman algorithm.

Model for perturbative coefficients

Coefficients d_{m} of the PT series:

Model	d_{1}	d_{2}	d_{3}	d_{4}	d_{5}
pQCD with $N_{f}=4$	1	1.52	2.59	27.4	-
$c=3.467, \beta=1.325$	1	1.50	2.62	27.8	
$c=3.456, \beta=1.325$	1	1.49	2.60	27.5	

We use model $\tilde{d}_{n}^{\text {mod }}=\frac{c^{n-1}\left(\beta^{n+1}-n\right)}{\beta^{2}-1} \Gamma(n)$
with parameters β and c estimated by known \tilde{d}_{n}
that possesses the Lipatov asymptotics $\tilde{d}_{n}^{\text {mod }} \sim b^{n} n!$ at $n \gg 1$.
Improving the parameters - like in Kalman algorithm.

Model for perturbative coefficients

Coefficients d_{m} of the PT series:

Model	d_{1}	d_{2}	d_{3}	d_{4}	d_{5}
pQCD with $N_{f}=4$	1	1.52	2.59	27.4	-
$c=3.467, \beta=1.325$	1	1.50	2.62	27.8	1888
$c=3.456, \beta=1.325$	1	1.49	2.60	27.5	1865

We use model $\tilde{d}_{n}^{\text {mod }}=\frac{c^{n-1}\left(\beta^{n+1}-n\right)}{\beta^{2}-1} \Gamma(n)$
with parameters β and c estimated by known \tilde{d}_{n}
that possesses the Lipatov asymptotics $\tilde{d}_{n}^{\text {mod }} \sim b^{n} n!$ at $n \gg 1$.
Improving the parameters - like in Kalman algorithm.

Model for perturbative coefficients

Coefficients d_{m} of the PT series:

Model	d_{1}	d_{2}	d_{3}	d_{4}	d_{5}
pQCD with $N_{f}=4$	1	1.52	2.59	27.4	-
$c=3.467, \beta=1.325$	1	1.50	2.62	27.8	1888
$c=3.456, \beta=1.325$	1	1.49	2.60	27.5	1865
"INNA" model	1	1.44	$[3,9]$	$[20,48][674,2786]$	

We use model $\tilde{d}_{n}^{\text {mod }}=\frac{c^{n-1}\left(\beta^{n+1}-n\right)}{\beta^{2}-1} \Gamma(n)$
with parameters β and c estimated by known \tilde{d}_{n}
that possesses the Lipatov asymptotics $\tilde{d}_{n}^{\text {mod }} \sim b^{n} n!$ at $n \gg 1$.
Improving the parameters - like in Kalman algorithm.

One-Ioop APT(E) for $\mathcal{D}\left(Q^{2}\right)$: Truncation errors

We define relative errors of series truncation at N th term:

$$
\Delta_{N}^{\mathrm{V}}[L]=1-\mathcal{D}_{N}[L] / \mathcal{D}_{\infty}[L]
$$

One-Ioop APT(E) for $\mathcal{D}\left(Q^{2}\right)$: Truncation errors

Conclusion: The best accuracy (better than 0.1%) is achieved for $\mathrm{N}^{2} \mathrm{LO}$ approximation.

One-loop APT(E) for $\mathcal{D}\left(Q^{2}\right)$: Truncation errors

Conclusion: If we add more terms $\mathrm{N}^{3} \mathrm{LO}$ - truncation error increases.

One-Ioop APT(E) for $\mathcal{D}\left(Q^{2}\right)$: Truncation errors

Conclusion: The best accuracy (better than 0.1%) is achieved for $\mathrm{N}^{2} \mathrm{LO}$ approximation.

Two-Ioop APT(E) for $\mathcal{D}\left(Q^{2}\right)$: Truncation errors

We define relative errors of series truncation at N th term:

$$
\Delta_{N}^{\mathrm{V}}[L]=1-\mathcal{D}_{N}[L] / \mathcal{D}_{\infty}[L]
$$

Two-Ioop APT(E) for $\mathcal{D}\left(Q^{2}\right)$: Truncation errors

Conclusion: The best accuracy (better than 0.1%) is achieved for $\mathrm{N}^{2} \mathrm{LO}$ approximation.

Two-Ioop APT(E) for $\mathcal{D}\left(Q^{2}\right)$: Truncation errors

Conclusion: If we add more terms $\mathrm{N}^{3} \mathrm{LO}$ - truncation error increases.

Two-Ioop APT(E) for $\mathcal{D}\left(Q^{2}\right)$: Truncation errors

Conclusion: The best accuracy (better than 0.1%) is achieved for $\mathrm{N}^{2} \mathrm{LO}$ approximation.

APT(E) for $\mathcal{D}\left(Q^{2}\right)$: Errors of modelling $P(t)$

We use model $d_{n}^{\text {mod }}=\frac{c^{n-1}\left(\beta^{n+1}-n\right)}{\beta^{2}-1} \Gamma(n)$
with parameters $\beta=1.325$ and $c=3.456$ estimated by known \tilde{d}_{n} and with use of Lipatov asymptotics.

We apply it to resum APT series and obtain $\mathcal{D}\left(Q^{2}\right)$.

$A P T(E)$ for $\mathcal{D}\left(Q^{2}\right)$: Errors of modelling $P(t)$

We use model $d_{n}^{\text {mod }}=\frac{c^{n-1}\left(\beta^{n+1}-n\right)}{\beta^{2}-1} \Gamma(n)$
with parameters $\beta=1.325$ and $c=3.456$ estimated by known \tilde{d}_{n} and with use of Lipatov asymptotics.

We apply it to resum APT series and obtain $\mathcal{D}\left(Q^{2}\right)$.
We deform our model for d_{n} by using coefficients $\beta_{\mathrm{NNA}}=1.322$ and $c_{\mathrm{NNA}}=3.885$
that deforms $d_{4}=27.5 \rightarrow d_{4}^{\text {NNA }}=20.4$

$A P T(E)$ for $\mathcal{D}\left(Q^{2}\right)$: Errors of modelling $P(t)$

We use model $d_{n}^{\text {mod }}=\frac{c^{n-1}\left(\beta^{n+1}-n\right)}{\beta^{2}-1} \Gamma(n)$
with parameters $\beta=1.325$ and $c=3.456$ estimated by known \tilde{d}_{n} and with use of Lipatov asymptotics.

We apply it to resum APT series and obtain $\mathcal{D}\left(Q^{2}\right)$.
We deform our model for d_{n} by using coefficients $\beta_{\text {NNA }}=1.322$ and $c_{\text {NNA }}=3.885$
that deforms $d_{4}=27.5 \rightarrow d_{4}^{\text {NNA }}=20.4$
We apply it to resum APT series and obtain $\mathcal{D}_{\mathrm{NNA}}\left(Q^{2}\right)$.

APT(E) for $\mathcal{D}\left(Q^{2}\right)$: Errors of modelling $P(t)$

Conclusion: The result of resummation is stable to the variations of higher-order coefficients: deviation is of the order of 0.1%.

Application

to
 Higgs boson decay

Higgs boson decay into b̄ -pair

This decay can be expressed in QCD by means of the correlator of quark scalar currents $J_{\mathrm{S}}(x)=: \bar{b}(x) b(x)$:

$$
\Pi\left(Q^{2}\right)=(4 \pi)^{2} i \int d x e^{i q x}\langle 0| T\left[J_{\mathbf{S}}(x) J_{\mathbf{S}}(0)\right]|0\rangle
$$

in terms of discontinuity of its imaginary part

$$
R_{\mathrm{S}}(s)=\operatorname{Im} \Pi(-s-i \epsilon) /(2 \pi s)
$$

so that

$$
\Gamma_{\mathrm{H} \rightarrow b \bar{b}}\left(M_{\mathrm{H}}\right)=\frac{G_{F}}{4 \sqrt{2} \pi} M_{\mathrm{H}} m_{b}^{2}\left(M_{\mathrm{H}}\right) R_{\mathrm{S}}\left(s=M_{\mathrm{H}}^{2}\right)
$$

FAPT(M) analysis of R_{S}

Running mass $m\left(Q^{2}\right)$ is described by the RG equation

$$
m^{2}\left(Q^{2}\right)=\hat{m}^{2} \alpha_{s}^{\nu_{0}}\left(Q^{2}\right)\left[1+\frac{c_{1} b_{0} \alpha_{s}\left(Q^{2}\right)}{4 \pi^{2}}\right]^{\nu_{1}}
$$

with RG-invariant mass \hat{m}^{2} (for b-quark $\hat{m}_{b} \approx 8.53 \mathrm{GeV}$) and $\nu_{0}=1.04, \nu_{1}=1.86$.

FAPT(M) analysis of R_{S}

Running mass $m\left(Q^{2}\right)$ is described by the $\mathbf{R G}$ equation

$$
m^{2}\left(Q^{2}\right)=\hat{m}^{2} \alpha_{s}^{\nu_{0}}\left(Q^{2}\right)\left[1+\frac{c_{1} b_{0} \alpha_{s}\left(Q^{2}\right)}{4 \pi^{2}}\right]^{\nu_{1}} .
$$

with RG-invariant mass \hat{m}^{2} (for b-quark $\hat{m}_{b} \approx 8.53 \mathrm{GeV}$) and $\nu_{0}=1.04, \nu_{1}=1.86$. This gives us

$$
\left[3 \hat{m}_{b}^{2}\right]^{-1} \widetilde{D}_{\mathrm{S}}\left(Q^{2}\right)=\alpha_{s}^{\nu_{0}}\left(Q^{2}\right)+\sum_{m>0} \frac{d_{m}}{\pi^{m}} \alpha_{s}^{m+\nu_{0}}\left(Q^{2}\right) .
$$

FAPT(M) analysis of R_{S}

Running mass $m\left(Q^{2}\right)$ is described by the $\mathbf{R G}$ equation

$$
m^{2}\left(Q^{2}\right)=\hat{m}^{2} \alpha_{s}^{\nu_{0}}\left(Q^{2}\right)\left[1+\frac{c_{1} b_{0} \alpha_{s}\left(Q^{2}\right)}{4 \pi^{2}}\right]^{\nu_{1}}
$$

with RG-invariant mass \hat{m}^{2} (for b-quark $\hat{m}_{b} \approx 8.53 \mathrm{GeV}$) and $\nu_{0}=1.04, \nu_{1}=1.86$. This gives us

$$
\left[3 \hat{m}_{b}^{2}\right]^{-1} \widetilde{D}_{\mathrm{S}}\left(Q^{2}\right)=\alpha_{s}^{\nu_{0}}\left(Q^{2}\right)+\sum_{m>0} \frac{d_{m}}{\pi^{m}} \alpha_{s}^{m+\nu_{0}}\left(Q^{2}\right)
$$

In 1-loop FAPT(M) we obtain

$$
\widetilde{\mathcal{R}}_{\mathrm{S}}^{(1) ; N}[L]=3 \hat{m}^{2}\left[\mathfrak{A}_{\nu_{0}}^{(1) ; \text { glob }}[L]+\sum_{m>0}^{N} \frac{d_{m}}{\pi^{m}} \mathfrak{A}_{m+\nu_{0}}^{(1) ; \text { glob }}[L]\right]
$$

FAPT(M) analysis of R_{S}

Running mass $m\left(Q^{2}\right)$ is described by the $\mathbf{R G}$ equation

$$
m^{2}\left(Q^{2}\right)=\hat{m}^{2} \alpha_{s}^{\nu_{0}}\left(Q^{2}\right)\left[1+\frac{c_{1} b_{0} \alpha_{s}\left(Q^{2}\right)}{4 \pi^{2}}\right]^{\nu_{1}}
$$

with RG-invariant mass \hat{m}^{2} (for b-quark $\hat{m}_{b} \approx 8.53 \mathrm{GeV}$) and $\nu_{0}=1.04, \nu_{1}=1.86$. This gives us

$$
\left[3 \hat{m}_{b}^{2}\right]^{-1} \widetilde{D}_{\mathrm{S}}\left(Q^{2}\right)=\alpha_{s}^{\nu_{0}}\left(Q^{2}\right)+\sum_{m>0} \frac{d_{m}}{\pi^{m}} \alpha_{s}^{m+\nu_{0}}\left(Q^{2}\right)
$$

In 2-loop FAPT(M) we obtain

$$
\widetilde{\mathcal{R}}_{\mathrm{S}}^{(2) ; N}[L]=3 \hat{m}^{2}\left[\mathfrak{B}_{\nu_{0}, \nu_{1}}^{(2) ; \text { glob }}[L]+\sum_{m>0}^{N} \frac{d_{m}}{\pi^{m}} \mathfrak{B}_{m+\nu_{0}, \nu_{1}}^{(2) ; \text {;glob }}[L]\right]
$$

Model for perturbative coefficients

Coefficients of our series, $\tilde{d}_{m}=d_{m} / d_{1}$, with $d_{1}=17 / 3$:

Model	\tilde{d}_{1}	\tilde{d}_{2}	\tilde{d}_{3}	\tilde{d}_{4}	\tilde{d}_{5}
pQCD	1	7.42	62.3		-

\qquad
\qquad

Model for perturbative coefficients

Coefficients of our series, $\tilde{d}_{m}=d_{m} / d_{1}$, with $d_{1}=17 / 3$:

Model	\tilde{d}_{1}	\tilde{d}_{2}	\tilde{d}_{3}	\tilde{d}_{4}	\tilde{d}_{5}
pQCD	1	7.42	62.3		-
$c=2.5, \beta=-0.48$	1	7.42	62.3		

\qquad

We use model $\tilde{d}_{n}^{\text {mod }}=\frac{c^{n-1}(\beta \Gamma(n)+\Gamma(n+1))}{\beta+1}$
with parameters β and c estimated by known \tilde{d}_{n} and with use of Lipatov asymptotics.

Model for perturbative coefficients

Coefficients of our series, $\tilde{d}_{m}=d_{m} / d_{1}$, with $d_{1}=17 / 3$:

Model	\tilde{d}_{1}	\tilde{d}_{2}	\tilde{d}_{3}	\tilde{d}_{4}	\tilde{d}_{5}
pQCD	1	7.42	62.3	620	-
$c=2.5, \beta=-0.48$	1	7.42	62.3	662	-

\qquad

We use model $\tilde{d}_{n}^{\text {mod }}=\frac{c^{n-1}(\beta \Gamma(n)+\Gamma(n+1))}{\beta+1}$
with parameters β and c estimated by known \tilde{d}_{n} and with use of Lipatov asymptotics.

Model for perturbative coefficients

Coefficients of our series, $\tilde{d}_{m}=d_{m} / d_{1}$, with $d_{1}=17 / 3$:

Model	\tilde{d}_{1}	\tilde{d}_{2}	\tilde{d}_{3}	\tilde{d}_{4}	\tilde{d}_{5}
pQCD	1	7.42	62.3	620	-
$c=2.5, \beta=-0.48$	1	7.42	62.3	662	-
$c=2.4, \beta=-0.52$	1	7.50	61.1	625	

We use model $\tilde{d}_{n}^{\text {mod }}=\frac{c^{n-1}(\beta \Gamma(n)+\Gamma(n+1))}{\beta+1}$
with parameters β and c estimated by known \tilde{d}_{n} and with use of Lipatov asymptotics.

Model for perturbative coefficients

Coefficients of our series, $\tilde{d}_{m}=d_{m} / d_{1}$, with $d_{1}=17 / 3$:

Model	\tilde{d}_{1}	\tilde{d}_{2}	\tilde{d}_{3}	\tilde{d}_{4}	\tilde{d}_{5}
pQCD	1	7.42	62.3	620	-
$c=2.5, \beta=-0.48$	1	7.42	62.3	662	-
$c=2.4, \beta=-0.52$	1	7.50	61.1	625	7826

We use model $\tilde{d}_{n}^{\text {mod }}=\frac{c^{n-1}(\beta \Gamma(n)+\Gamma(n+1))}{\beta+1}$
with parameters β and c estimated by known \tilde{d}_{n} and with use of Lipatov asymptotics.

Model for perturbative coefficients

Coefficients of our series, $\tilde{d}_{m}=d_{m} / d_{1}$, with $d_{1}=17 / 3$:

Model	\tilde{d}_{1}	\tilde{d}_{2}	\tilde{d}_{3}	\tilde{d}_{4}	\tilde{d}_{5}
pQCD	1	7.42	62.3	620	-
$c=2.5, \beta=-0.48$	1	7.42	62.3	662	-
$c=2.4, \beta=-0.52$	1	7.50	61.1	625	7826
"PMS" model	-	-	64.8	547	7782

We use model $\tilde{d}_{n}^{\text {mod }}=\frac{c^{n-1}(\beta \Gamma(n)+\Gamma(n+1))}{\beta+1}$
with parameters β and c estimated by known \tilde{d}_{n} and with use of Lipatov asymptotics.

FAPT(M) for $\Gamma_{H \rightarrow \bar{b} b}\left(m_{H}\right)$: Truncation errors

We define relative errors of series truncation at N th term:

$$
\Delta_{N}[L]=1-\widetilde{\mathcal{R}}_{\mathrm{s}}^{(2 ; N)}[L] / \widetilde{\mathcal{R}}_{\mathrm{s}}^{(2 ; \infty)}[L]
$$

FAPT(M) for $\Gamma_{H \rightarrow \bar{b} b}\left(m_{H}\right)$: Truncation errors

We define relative errors of series truncation at N th term:

$$
\Delta_{N}[L]=1-\widetilde{\mathcal{R}}_{\mathrm{s}}^{(2 ; N)}[L] / \widetilde{\mathcal{R}}_{\mathrm{s}}^{(2 ; \infty)}[L]
$$

FAPT(M) for $\Gamma_{H \rightarrow \bar{b} b}\left(m_{H}\right)$: Truncation errors

We define relative errors of series truncation at N th term:

$$
\Delta_{N}[L]=1-\widetilde{\mathcal{R}}_{\mathrm{s}}^{(2 ; N)}[L] / \widetilde{\mathcal{R}}_{\mathrm{s}}^{(2 ; \infty)}[L]
$$

FAPT(M) for $\Gamma_{H \rightarrow \bar{b} b}\left(m_{H}\right)$: Truncation errors

Conclusion: If we need accuracy better than 0.5% only then we need to calculate the 5-th correction.

FAPT(M) for $\Gamma_{H \rightarrow \bar{b} b}\left(m_{H}\right)$: Truncation errors

Conclusion: If we need accuracy better than 0.5% only then we need to calculate the 5 -th correction.

But profit will be tiny - instead of 0.5% one'll obtain 0.3% !

FAPT(M) for $\Gamma_{H \rightarrow \bar{b} b}\left(m_{H}\right)$: Truncation errors

Conclusion: If we need accuracy of the order 0.5% then we need to take into account up to the 4-th correction.

Note: uncertainty due to $P(t)$-modelling is small $\lesssim 0.6 \%$.

FAPT(M) for $\Gamma_{H \rightarrow \bar{b} b}\left(m_{H}\right)$: Truncation errors

Conclusion: If we need accuracy of the order 1\% then we need to take into account up to the 3-rd correction - in agreement with Kataev\&Kim [0902.1442]. Note: RG-invariant mass uncertainty $\sim 2 \%$.

FAPT(M) for $\Gamma_{H \rightarrow \bar{b} b}\left(m_{H}\right)$: Truncation errors

Conclusion: If we need accuracy of the order 1\% then we need to take into account up to the 3-rd correction - in agreement with Kataev\&Kim [0902.1442]. Note: overall uncertainty $\sim 3 \%$.

Resummation for $\Gamma_{H \rightarrow \bar{b} b}\left(m_{H}\right)$: Loop orders

Comparison of 1- (upper strip) and 2- (lower strip) loop results. We observe a 5% reduction of the two-loop estimate.

CONCLUSIONS

- FAPT provides effective tool to apply APT approach for renormgroup improved perturbative amplitudes.

CONCLUSIONS

- FAPT provides effective tool to apply APT approach for renormgroup improved perturbative amplitudes.
- Both APT and FAPT produce finite resummed answers for perturbative quantities if we know generating function $P(t)$ for PT coefficients.

CONCLUSIONS

- FAPT provides effective tool to apply APT approach for renormgroup improved perturbative amplitudes.
- Both APT and FAPT produce finite resummed answers for perturbative quantities if we know generating function $P(t)$ for PT coefficients.
- Using quite simple model generating function $P(t)$ for Adler function $\mathcal{D}\left(Q^{2}\right)$ we show that already at $\mathbf{N}^{2} \mathrm{LO}$ we have accuracy of the order 0.1%...

CONCLUSIONS

- FAPT provides effective tool to apply APT approach for renormgroup improved perturbative amplitudes.
- Both APT and FAPT produce finite resummed answers for perturbative quantities if we know generating function $P(t)$ for PT coefficients.
- Using quite simple model generating function $P(t)$ for Adler function $\mathcal{D}\left(Q^{2}\right)$ we show that already at N^{2} LO we have accuracy of the order 0.1%...
- ... and for Higgs boson decay $H \rightarrow \bar{b} b$ at \mathbf{N}^{3} LO - of the order of:
1% - due to truncation error

CONCLUSIONS

- FAPT provides effective tool to apply APT approach for renormgroup improved perturbative amplitudes.
- Both APT and FAPT produce finite resummed answers for perturbative quantities if we know generating function $P(t)$ for PT coefficients.
- Using quite simple model generating function $P(t)$ for Adler function $\mathcal{D}\left(Q^{2}\right)$ we show that already at \mathbf{N}^{2} LO we have accuracy of the order 0.1%...
- ... and for Higgs boson decay $H \rightarrow \bar{b} b$ at $\mathbf{N}^{3} \mathrm{LO}$ — of the order of:
1\% - due to truncation error... ;
2\% - due to RG-invariant mass uncertainty.

