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Asymptotic Series

in
Perturbative QFT
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Strength and Weakness of Pert. QFT

A lot of successive pert. calculations in QM and QFT.
Practically, it is synonym of Quantum Theory.
Feynman diagrams became a symbol of QFT.

Nevertheless, power expansion of the quantum amplitude
C(α) is not convergent.

Feynman Series
∑∑∑

ckα
k is not Convergent !
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Strength and Weakness of Pert. QFT

A lot of successive pert. calculations in QM and QFT.
Practically, it is synonym of Quantum Theory.
Feynman diagrams became a symbol of QFT.

Nevertheless, power expansion of the quantum amplitude
C(α) is not convergent.

Feynman Series
∑∑∑

ckα
k is not Convergent !

Due to

Essential singularity at α = 0

Factorial growth of coefficients ck ∼ k!
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Singularity at g = 0, factorial growth ck ∼ k!

For illustration, take the 0-dim analog I(g) =

∞∫∫∫

−∞

e−x2−gx4

dx

Expanding it in power-in- g series:

I(g) ∼
∑∑∑

k=0

(−g)kIk with Ik =
Γ(2k + 1/2)

Γ(k + 1)
→ 2k k!
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Singularity at g = 0, factorial growth ck ∼ k!

For illustration, take the 0-dim analog I(g) =

∞∫∫∫

−∞

e−x2−gx4

dx

Expanding it in power-in- g series:

I(g) ∼
∑∑∑

k=0

(−g)kIk with Ik =
Γ(2k + 1/2)

Γ(k + 1)
→ 2k k!

Meanwhile, I(g) can be expressed via MacDonald function

I(g) =
1

√
2g

e1/8g K1/4

(
1

8g

)

with known analytic properties in complex g plane.

It has an essential singularity e−1/8g near the origin:

I(g) =
√
π − g

√
2π

∫∫∫ ∞

0

dγ exp(−1/4γ)

γ(g + γ)
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Asymptotic Series and ‘Practic. Convergence’
The Henry Poincaré (end of XIX) analysis of Asymptotic Series
(AS) can be summed as follows:
AS can be used for obtaining quantitative information on
expanded function.

fk

0 1 2 3 . . . K K + 1 k

The error of approximating
F (g) by first K terms of ex-
pansion, FK(g),

F (g) → FK(g) =
∑∑∑

k≤K

fk(g) is

equal to the last detained term
fK(g).

For k ≥ K + 1 truncation er-
ror starts to grow!
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Asymptotic Series and ‘Practic. Convergence’
The Henry Poincaré (end of XIX) analysis of Asymptotic Series
(AS) can be summed as follows:
AS can be used for obtaining quantitative information on
expanded function.
The error of approximating F (g) by first K terms of
expansion, FK(g),

F (g) → FK(g) =
∑∑∑

k≤K

fk(g)

is equal to the last detained term fK(g).

For the power AS, fk(g) = fk g
k with factorial growth fk ∼ k!

absolute values of fk(g) cease to diminish at k ∼ 1/g .
This yields to the natural best possible accuracy of a given AS

(in contrast to convergent series! )
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Asymptotic Series and ‘Practic. Convergence’

I(g) =

∞∫∫∫

−∞

e−x2−gx4

dx ? = ?
∑∑∑

k≥0

Ik (−g)k

g K (−g)K IK (−g)K+1 IK+1 ∆KI(g)

0.07 7 −0.04(2%) +0.07(4.4%) 1.4%

0.07 9 −0.17(10%) +0.42(25%) 7%
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Asymptotic Series and ‘Practic. Convergence’

I(g) =

∞∫∫∫

−∞

e−x2−gx4

dx ? = ?
∑∑∑

k≥0

Ik (−g)k

g K (−g)K IK (−g)K+1 IK+1 ∆KI(g)

0.07 7 −0.04(2%) +0.07(4.4%) 1.4%

0.07 9 −0.17(10%) +0.42(25%) 7%

0.15 2 +0.13(8%) −0.16(10%) 4%

0.15 4 +0.30(18%) −0.72(44%) 12%
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Asymptotic Series and ‘Practic. Convergence’

I(g) =

∞∫∫∫

−∞

e−x2−gx4

dx ? = ?
∑∑∑

k≥0

Ik (−g)k

g K (−g)K IK (−g)K+1 IK+1 ∆KI(g)

0.07 7 −0.04(2%) +0.07(4.4%) 1.4%

0.07 9 −0.17(10%) +0.42(25%) 7%

0.15 2 +0.13(8%) −0.16(10%) 4%

0.15 4 +0.30(18%) −0.72(44%) 12%

Thus, K∗(g = 0.07) = 7 and K∗(g = 0.15) = 2 .

Not possible to get the 1% accuracy at g = 0.15 for I(g).
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Asymptotic Series and ‘Practic. Convergence’

I(g) =

∞∫∫∫

−∞

e−x2−gx4

dx ? = ?
∑∑∑

k≥0

Ik (−g)k

Thus, K∗(g = 0.07) = 7 and K∗(g = 0.15) = 2 .
Not possible to get the 1% accuracy at g = 0.15 for I(g).

We made conclusions “ where to stop ” using exact expression

I(g) =
1

√
2g

e1/8g K1/4

(
1

8g

)
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Asymptotic Series and ‘Practic. Convergence’

I(g) =

∞∫∫∫

−∞

e−x2−gx4

dx ? = ?
∑∑∑

k≥0

Ik (−g)k

Thus, K∗(g = 0.07) = 7 and K∗(g = 0.15) = 2 .
Not possible to get the 1% accuracy at g = 0.15 for I(g).

We made conclusions “ where to stop ” using exact expression

I(g) =
1

√
2g

e1/8g K1/4

(
1

8g

)

What to do in QCD?
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Asymptotic Series and ‘Practic. Convergence’

I(g) =

∞∫∫∫

−∞

e−x2−gx4

dx ? = ?
∑∑∑

k≥0

Ik (−g)k

Thus, K∗(g = 0.07) = 7 and K∗(g = 0.15) = 2 .
Not possible to get the 1% accuracy at g = 0.15 for I(g).

We made conclusions “ where to stop ” using exact expression

I(g) =
1

√
2g

e1/8g K1/4

(
1

8g

)

What to do in QCD?

APT approach delivers a solution!
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Analytic Perturbation Theory

in
QCD
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Analytic Perturb Theory (APT): Preamble
1st step: Improving PT by RG Method ( Bogoliubov–Shirkov
[1955-56]).
In QFT, RG result obeys unphysical singularity.
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Analytic Perturb Theory (APT): Preamble
1st step: Improving PT by RG Method ( Bogoliubov–Shirkov
[1955-56]).
In QFT, RG result obeys unphysical singularity.

2nd step: Improving PT solution by the analyticity imperative,
based on the causality condition
(Bogoliubov–Logunov–Shirkov [1959], Radyushkin and
Krasnikov&Pivovarov [1982] ).
Its minimal (without extra parameters) version was devised by
Jones&Solovtsov&Shirkov [1996–2006] and is known as
Analytic Perturbation Theory .
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Analytic Perturb Theory (APT): Preamble
1st step: Improving PT by RG Method ( Bogoliubov–Shirkov
[1955-56]).
In QFT, RG result obeys unphysical singularity.

2nd step: Improving PT solution by the analyticity imperative,
based on the causality condition
(Bogoliubov–Logunov–Shirkov [1959], Radyushkin and
Krasnikov&Pivovarov [1982] ).
Its minimal (without extra parameters) version was devised by
Jones&Solovtsov&Shirkov [1996–2006] and is known as
Analytic Perturbation Theory .

3rd step: Generalizing APT by including fractional powers of
coupling and its products with logarithms due to principle of
analytization “as a whole” (Karanikas–Stefanis, [2001] ) in
(A. B.&Mikhailov&Stefanis [2005–2009] ) ⇒ Fractional APT .
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Basics of pQCD

coupling αs(µ
2) = (4π/b0)as[L] with L = ln(µ2/Λ2)

RG equation
d as[L]

dL
= −a2

s − c1 a
3
s − . . .

1-loop solution generates Landau pole singularity:
as[L] = 1/L

2-loop solution generates square-root singularity:
as[L] ∼ 1/

√
L + c1lnc1

PT series: D[L] = 1+ d1as[L] + d2a
2
s[L] + . . .

Higher-loop Resummation in QCD FAPT – p. 12



New Trends in HEP’11 @Alushta (Crimea)

Basics of APT

Different effective couplings in
Minkowskian (R&K&P[1982]) and Euclidean (S&S[1996])
regions.
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Basics of APT

Different effective couplings in
Minkowskian (R&K&P[1982]) and Euclidean (S&S[1996])
regions.

Based on RG + Causality
⇓ ⇓

UV asymptotics Spectrality
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Basics of APT

Different effective couplings in
Minkowskian (R&K&P[1982]) and Euclidean (S&S[1996])
regions.

Based on RG + Causality
⇓ ⇓

UV asymptotics Spectrality

Euclidean: −q2 = Q2, L = ln Q2/Λ2, {An(L)}n∈N

Minkowskian: q2 = s, Ls = ln s/Λ2, {An(Ls)}n∈N
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Basics of APT

Different effective couplings in
Minkowskian (R&K&P[1982]) and Euclidean (S&S[1996])
regions.

Based on RG + Causality
⇓ ⇓

UV asymptotics Spectrality

Euclidean: −q2 = Q2, L = ln Q2/Λ2, {An(L)}n∈N

Minkowskian: q2 = s, Ls = ln s/Λ2, {An(Ls)}n∈N

PT
∑∑∑
m

dmam
s (Q2) ⇒ ∑∑∑

m
dmAm(Q2) APT

m is power ⇒ m is index
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Spectral representation

By analytization we mean “Källen–Lehmann” representation

[
f(Q2)

]
an =

∫∫∫ ∞

0

ρf(σ)

σ + Q2 − iε
dσ

Then (note here pole remover ):

ρ(σ) =
1

L2
σ + π2

A1[L] =

∫∫∫ ∞

0

ρ(σ)

σ + Q2
dσ =

1

L
− 1

eL − 1

A1[Ls] =

∫∫∫ ∞

s

ρ(σ)

σ
dσ =

1

π
arccos

Ls√
π2 + L2

s

Higher-loop Resummation in QCD FAPT – p. 14
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Spectral representation

By analytization we mean “Källen–Lehmann” representation

[
f(Q2)

]
an =

∫∫∫ ∞

0

ρf(σ)

σ + Q2 − iε
dσ

with spectral density ρf(σ) = Im
[
f(−σ)

]
/π. Then:

An[L]=

∫∫∫ ∞

0

ρn(σ)

σ + Q2
dσ =

1

(n − 1)!

(
− d

dL

)n−1

A1[L]

An[Ls]=

∫∫∫ ∞

s

ρn(σ)

σ
dσ =

1

(n − 1)!

(
− d

dLs

)n−1

A1[Ls]

an
s [L] =

1

(n − 1)!

(
− d

dL

)n−1

as[L]
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APT graphics: Distorting mirror

First, couplings: A1(s) and A1(Q
2)

-4 -2 0 2 4

0.2

0.4

0.6

0.8

1

Q2 [GeV2]−s [GeV2]

A1(Q
2)

�

1(s)
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APT graphics: Distorting mirror

Second, square-images: A2(s) and A2(Q
2)

-10 -5 0 5 10

0.02

0.04

0.06

0.08

0.1

Q2 [GeV2]−s [GeV2]

A2(Q
2)

�

2(s)
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Need
to use

Fractional APT
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Problems of APT

In standard QCD PT we have not only power series
F [L] =

∑∑∑
m

fm am
s [L], but also:

Factorization → (as[L])nLm

⇒ analytization “as a whole” Karanikas&Stefanis [2001]
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Problems of APT

In standard QCD PT we have not only power series
F [L] =

∑∑∑
m

fm am
s [L], but also:

Factorization → (as[L])nLm

⇒ analytization “as a whole” Karanikas&Stefanis [2001]

RG-improvement to account for higher-orders →

Z[L] = exp

{∫∫∫ as[L] γ(a)

β(a)
da

}
1-loop−→ [as[L]]γ0/(2β0)
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Problems of APT

In standard QCD PT we have not only power series
F [L] =

∑∑∑
m

fm am
s [L], but also:

Factorization → (as[L])nLm

⇒ analytization “as a whole” Karanikas&Stefanis [2001]

RG-improvement to account for higher-orders →

Z[L] = exp

{∫∫∫ as[L] γ(a)

β(a)
da

}
1-loop−→ [as[L]]γ0/(2β0)

Two-loop case → (as)
ν ln(as)

New functions: (as)
ν , (as)

ν ln(as), (as)
ν Lm, . . .
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Constructing one-loop FAPT

In one-loop APT we have a very nice recurrence relation

An[L] =
1

(n − 1)!

(
− d

dL

)n−1

A1[L]

and the same in Minkowski domain

An[L] =
1

(n − 1)!

(
− d

dL

)n−1

A1[L] .

We can use it to construct FAPT .
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FAPT(E): Properties of Aν[L]

First, Euclidean coupling ( L = L(Q2)):

Aν [L] =
1

Lν
− F (e−L, 1 − ν)

Γ(ν)

Here F (z, ν) is reduced Lerch transcendent. function. It is
analytic function in ν.

Higher-loop Resummation in QCD FAPT – p. 20
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FAPT(E): Properties of Aν[L]

First, Euclidean coupling ( L = L(Q2)):

Aν [L] =
1

Lν
− F (e−L, 1 − ν)

Γ(ν)

Here F (z, ν) is reduced Lerch transcendent. function. It is
analytic function in ν. Properties:

A0[L] = 1;

A−m[L] = Lm for m ∈ N;

Am[L] = (−1)mAm[−L] for m ≥ 2 , m ∈ N;

Am[±∞] = 0 for m ≥ 2 , m ∈ N;
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FAPT(M): Properties of Aν[L]

Now, Minkowskian coupling ( L = L(s)):

Aν [L] =
sin

[
(ν − 1)arccos

(
L/

√
π2 + L2

)]

π(ν − 1) (π2 + L2)(ν−1)/2

Here we need only elementary functions.

Higher-loop Resummation in QCD FAPT – p. 21
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FAPT(M): Properties of Aν[L]

Now, Minkowskian coupling ( L = L(s)):

Aν [L] =
sin

[
(ν − 1)arccos

(
L/

√
π2 + L2

)]

π(ν − 1) (π2 + L2)(ν−1)/2

Here we need only elementary functions. Properties:

A0[L] = 1;

A−1[L] = L;

A−2[L] = L2 − π2

3
, A−3[L] = L

(
L2 − π2

)
, . . . ;

Am[L] = (−1)mAm[−L] for m ≥ 2 , m ∈ N;

Am[±∞] = 0 for m ≥ 2 , m ∈ N
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FAPT(E): Graphics of Aν[L] vs. L

Aν [L] =
1

Lν
− F (e−L, 1 − ν)

Γ(ν)

Graphics for fractional ν ∈ [2,3] :

-15 -10 -5 0 5 10 15

0

0.02

0.04

0.06

0.08

0.1

L

A2.25(L)

A2.5(L)

A3(L)

A2(L)
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FAPT(M): Graphics of Aν[L] vs. L

Aν [L] =
sin

[
(ν − 1)arccos

(
L/

√
π2 + L2

)]

π(ν − 1) (π2 + L2)(ν−1)/2

Compare with graphics in Minkowskian region :
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�
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FAPT(E): Comparing Aν with (A1)
ν

∆E(L,ν) =
Aν [L] −

(
A1[L]

)ν

Aν[L]

Graphics for fractional ν =0.62, 1.62 and 2.62:

2 4 6 8 10

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

L

∆E[L, ν]

The larger ν is — the more important FAPT becomes!

Higher-loop Resummation in QCD FAPT – p. 24



New Trends in HEP’11 @Alushta (Crimea)

FAPT(M): Comparing Aν with (A1)
ν

∆M(L,ν) =
Aν [L] −

(
A1[L]

)ν

Aν [L]

Minkowskian graphics for ν =0.62, 1.62 and 2.62:

2 4 6 8 10

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

L

∆M[L, ν]

The larger ν is — the more important FAPT becomes!
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Resummation
in

one-loop APT and FAPT
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Generating function for coefficients

Consider series D[L] = d0 +

∞∑∑∑

n=1

dnAn[L]
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Generating function for coefficients

Consider series D[L] = d0 +

∞∑∑∑

n=1

dnAn[L]

Let exists the generating function P (t) for coefficients:

dn = d1

∫∫∫ ∞

0
P (t) tn−1dt with

∫∫∫ ∞

0
P (t)dt = 1 .

We define a shorthand notation

〈〈f(t)〉〉P (t) ≡
∫∫∫ ∞

0
f(t)P (t)dt .

Then coefficients dn = d1 〈〈tn−1〉〉P (t).
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Generating function for coefficients

Consider series D[L] = d0 + d1

∞∑∑∑

n=1

〈〈tn−1〉〉P (t)An[L]

We have one-loop recurrence relation:

An+1[L] =
1

Γ(n + 1)

(
− d

dL

)n

A1[L] .
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Generating function for coefficients

Consider series D[L] = d0 + d1

∞∑∑∑

n=1

〈〈tn−1〉〉P (t)An[L]

We have one-loop recurrence relation:

An+1[L] =
1

Γ(n + 1)

(
− d

dL

)n

A1[L] .

Result:
D[L] = d0 + d1 〈〈A1[L − t]〉〉P (t)
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Generating function for coefficients

Consider series D[L] = d0 + d1

∞∑∑∑

n=1

〈〈tn−1〉〉P (t)An[L]

We have one-loop recurrence relation:

An+1[L] =
1

Γ(n + 1)

(
− d

dL

)n

A1[L] .

Result:
D[L] = d0 + d1 〈〈A1[L − t]〉〉P (t)

and for Minkowski region:

R[L] = d0 + d1 〈〈A1[L − t]〉〉P (t)
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Models for perturbative coefficients

Coefficients dn of the PT series:

Model P (t) dn

c δ(t− c) cn
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Models for perturbative coefficients

Coefficients dn of the PT series:

Model P (t) dn

c δ(t− c) cn

θ(t < 1)
1

n
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Models for perturbative coefficients

Coefficients dn of the PT series:

Model P (t) dn

c δ(t− c) cn

θ(t < 1)
1

n

(t/c)γ+1e−t/c nγ cnΓ(n+1)
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Resummation in one-loop FAPT

Consider series Rν [L] = d0Aν [L] +

∞∑∑∑

n=1

dnAn+ν [L]

or Dν [L] = d0Aν [L] +

∞∑∑∑

n=1

dnAn+ν [L]

with coefficients dn = d1 〈〈tn−1〉〉P (t).

Result:

Rν [L] = d0Aν [L] + d1 〈〈A1+ν [L − t]〉〉Pν(t) ;

Dν [L] = d0Aν [L] + d1 〈〈A1+ν [L − t]〉〉Pν(t) .

where Pν(t) =

1∫∫∫

0

P

(
t

1 − z

)
ν zν−1 dz

1 − z
.
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Resummation
in

two- and three-loop FAPT
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Resummation in two-loop FAPT

Consider series Sν [L] =

∞∑∑∑

n=1

〈〈tn−1〉〉P (t)Fn+ν [L].

Here Fν [L] = A(2)
ν [L] or A

(2)
ν [L] (or ρ

(2)
ν [L] — for global).

Higher-loop Resummation in QCD FAPT – p. 31



New Trends in HEP’11 @Alushta (Crimea)

Resummation in two-loop FAPT

Consider series Sν [L] =

∞∑∑∑

n=1

〈〈tn−1〉〉P (t)Fn+ν [L].

Here Fν [L] = A(2)
ν [L] or A

(2)
ν [L] (or ρ

(2)
ν [L] — for global).

We have two-loop recurrence relation ( c1 = b1/b
2
0):

− 1

n + ν

d

dL
Fn+ν [L] = Fn+1+ν [L] + c1Fn+2+ν [L] .

Higher-loop Resummation in QCD FAPT – p. 31



New Trends in HEP’11 @Alushta (Crimea)

Resummation in two-loop FAPT

Consider series Sν [L] =

∞∑∑∑

n=1

〈〈tn−1〉〉P (t)Fn+ν [L].

Here Fν [L] = A(2)
ν [L] or A

(2)
ν [L] (or ρ

(2)
ν [L] — for global).

We have two-loop recurrence relation ( c1 = b1/b
2
0):

− 1

n + ν

d

dL
Fn+ν [L] = Fn+1+ν [L] + c1Fn+2+ν [L] .

In order to resum our series we need to define the two-loop

time τ2(t) = t− c1ln
[
1 + t

c1

]
with

dτ2(t)

dt
=

1

1 + c1/t

to be compared with standard two-loop evolution time τ(2)(t)

with
dt

dτ(2)(t)
=

1

1 + c1/τ(2)(t)
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Resummation in two-loop FAPT

Consider series Sν [L] =

∞∑∑∑

n=1

〈〈tn−1〉〉P (t)Fn+ν [L].

Here Fν [L] = A(2)
ν [L] or A

(2)
ν [L] (or ρ

(2)
ν [L] — for global).

We have two-loop recurrence relation ( c1 = b1/b
2
0):

− 1

n + ν

d

dL
Fn+ν [L] = Fn+1+ν [L] + c1Fn+2+ν [L] .

Result (with τ2(t) = t− c1ln(1 + t/c1)):

S[L] =
〈〈
F1+ν [L]− t2

c1 + t

∫∫∫ 1

0
zνdz Ḟ1+ν [L+τ2(t z)−τ2(t)]

+
c1 t

c1 + t

{
F2+ν [L]−

∫∫∫ 1

0
dz

t2 zν+1

c1 + t z
Ḟ2+ν [L+τ2(t z)−τ2(t)]

}〉〉

P (t)
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Resummation in three-loop FAPT

Consider series Sν [L] =

∞∑∑∑

n=1

〈〈tn−1〉〉P (t)Fn+ν [L].

Here Fν [L] = A(2)
ν [L] or A

(2)
ν [L] (or ρ

(2)
ν [L] — for global).
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Resummation in three-loop FAPT

Consider series Sν [L] =

∞∑∑∑

n=1

〈〈tn−1〉〉P (t)Fn+ν [L].

Here Fν [L] = A(2)
ν [L] or A

(2)
ν [L] (or ρ

(2)
ν [L] — for global).

We have three-loop recurrence relation ( c2 = b2/b
3
0):

− dFn+ν [L]

(n + ν) dL
= Fn+1+ν [L] + c1Fn+2+ν [L] + c2Fn+3+ν [L] .
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Resummation in three-loop FAPT

Consider series Sν [L] =

∞∑∑∑

n=1

〈〈tn−1〉〉P (t)Fn+ν [L].

Here Fν [L] = A(2)
ν [L] or A

(2)
ν [L] (or ρ

(2)
ν [L] — for global).

We have three-loop recurrence relation ( c2 = b2/b
3
0):

− dFn+ν [L]

(n + ν) dL
= Fn+1+ν [L] + c1Fn+2+ν [L] + c2Fn+3+ν [L] .

Now, to resum our series, we need to define the three-loop

time τ3(t) with
dτ3(t)

dt
=

1

1 + (c1/t) + c2/t2

to be compared with standard three-loop evolution time τ(3)(t)

with
dt

dτ(3)(t)
=

1

1 + (c1/τ(3)(t)) + c2/τ(3)(t)2
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Resummation in three-loop FAPT

Consider series Sν [L] =

∞∑∑∑

n=1

〈〈tn−1〉〉P (t)Fn+ν [L].

Here Fν [L] = A(2)
ν [L] or A

(2)
ν [L] (or ρ

(2)
ν [L] — for global).

We have three-loop recurrence relation ( c2 = b2/b
3
0):

− dFn+ν [L]

(n + ν) dL
= Fn+1+ν [L] + c1Fn+2+ν [L] + c2Fn+3+ν [L] .

Result ( Lz,t ≡ L+τ3(t z)−τ3(t)]):

S[L] =

〈〈
F1+ν [L] + tF2+ν [L]− t2

t2 + c1 t + c2

∫∫∫ 1

0
zνdz

{
t Ḟ1+ν [Lz,t]

+ z t2Ḟ2+ν [Lz, t] + (ν + 1) tF2+ν [Lz, t]− c2 ν

z
F3+ν [Lz, t]

}〉〉

P (t)
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Resummation
for

Adler function D(Q2)
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Adler function D(Q2) in vector channel

Adler function D(Q2) can be expressed in QCD by means of
the correlator of quark vector currents

ΠV(Q
2) =

(4π)2

3q2
i

∫∫∫
dxeiqx〈0| T [ Jµ(x)J

µ(0) ] |0〉

in terms of discontinuity of its imaginary part

RV(s) =
1

π
Im ΠV(−s− iε) ,

so that

D(Q2) = Q2

∫∫∫ ∞

0

RV(σ)

(σ + Q2)2
dσ .
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APT analysis of D(Q2) and RV(s)

QCD PT gives us

D(Q2) = 1+
∑∑∑

m>0

dm

πm

(
αs(Q

2)
)m

.
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APT analysis of D(Q2) and RV(s)

QCD PT gives us

D(Q2) = 1+
∑∑∑

m>0

dm

πm

(
αs(Q

2)
)m

.

In APT (E) we obtain

DN(Q2) = 1+

N∑∑∑

m>0

dm

πm
Aglob

m (Q2)
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APT analysis of D(Q2) and RV(s)

QCD PT gives us

D(Q2) = 1+
∑∑∑

m>0

dm

πm

(
αs(Q

2)
)m

.

In APT (E) we obtain

DN(Q2) = 1+

N∑∑∑

m>0

dm

πm
Aglob

m (Q2)

and in APT (M)

RV;N(s) = 1+

N∑∑∑

m>0

dm

πm
A

glob
m (s)
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Model for perturbative coefficients

Coefficients dm of the PT series:

Model d1 d2 d3 d4 d5

pQCD with Nf = 4 1 1.52 2.59 —
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Model for perturbative coefficients

Coefficients dm of the PT series:

Model d1 d2 d3 d4 d5

pQCD with Nf = 4 1 1.52 2.59 —

c = 3.467, β = 1.325 1 1.50 2.62

We use model d̃mod
n =

cn−1(βn+1 − n)

β2 − 1
Γ(n)

with parameters β and c estimated by known d̃n

that possesses the Lipatov asymptotics d̃mod
n ∼ bnn! at n � 1.
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Model for perturbative coefficients

Coefficients dm of the PT series:

Model d1 d2 d3 d4 d5

pQCD with Nf = 4 1 1.52 2.59 27.4 —

c = 3.467, β = 1.325 1 1.50 2.62 27.8

We use model d̃mod
n =

cn−1(βn+1 − n)

β2 − 1
Γ(n)

with parameters β and c estimated by known d̃n

that possesses the Lipatov asymptotics d̃mod
n ∼ bnn! at n � 1.

Improving the parameters — like in Kalman algorithm .
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Model for perturbative coefficients

Coefficients dm of the PT series:

Model d1 d2 d3 d4 d5

pQCD with Nf = 4 1 1.52 2.59 27.4 —

c = 3.467, β = 1.325 1 1.50 2.62 27.8

c = 3.456, β = 1.325 1 1.49 2.60 27.5

We use model d̃mod
n =

cn−1(βn+1 − n)

β2 − 1
Γ(n)

with parameters β and c estimated by known d̃n

that possesses the Lipatov asymptotics d̃mod
n ∼ bnn! at n � 1.

Improving the parameters — like in Kalman algorithm .
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Model for perturbative coefficients

Coefficients dm of the PT series:

Model d1 d2 d3 d4 d5

pQCD with Nf = 4 1 1.52 2.59 27.4 —

c = 3.467, β = 1.325 1 1.50 2.62 27.8 1888

c = 3.456, β = 1.325 1 1.49 2.60 27.5 1865

We use model d̃mod
n =

cn−1(βn+1 − n)

β2 − 1
Γ(n)

with parameters β and c estimated by known d̃n

that possesses the Lipatov asymptotics d̃mod
n ∼ bnn! at n � 1.

Improving the parameters — like in Kalman algorithm .

Higher-loop Resummation in QCD FAPT – p. 36



New Trends in HEP’11 @Alushta (Crimea)

Model for perturbative coefficients

Coefficients dm of the PT series:

Model d1 d2 d3 d4 d5

pQCD with Nf = 4 1 1.52 2.59 27.4 —

c = 3.467, β = 1.325 1 1.50 2.62 27.8 1888

c = 3.456, β = 1.325 1 1.49 2.60 27.5 1865

“INNA” model 1 1.44 [3,9] [20,48] [674,2786]

We use model d̃mod
n =

cn−1(βn+1 − n)

β2 − 1
Γ(n)

with parameters β and c estimated by known d̃n

that possesses the Lipatov asymptotics d̃mod
n ∼ bnn! at n � 1.

Improving the parameters — like in Kalman algorithm .
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One-loop APT(E) for D(Q2): Truncation errors

We define relative errors of series truncation at N th term:

∆V
N [L] = 1−DN [L]/D∞[L]

2.5 5 7.5 10 12.5 15 17.5 20

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Q2 [GeV2]

∆V
1

∆V
2
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One-loop APT(E) for D(Q2): Truncation errors

Conclusion: The best accuracy (better than 0.1%) is
achieved for N2LO approximation.
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One-loop APT(E) for D(Q2): Truncation errors

Conclusion: If we add more terms N3LO — truncation error
increases.
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One-loop APT(E) for D(Q2): Truncation errors

Conclusion: The best accuracy (better than 0.1%) is
achieved for N2LO approximation.
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D(Q2) ≈ D2(Q
2)

D1(Q
2)
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Two-loop APT(E) for D(Q2): Truncation errors

We define relative errors of series truncation at N th term:

∆V
N [L] = 1−DN [L]/D∞[L]
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Two-loop APT(E) for D(Q2): Truncation errors

Conclusion: The best accuracy (better than 0.1%) is
achieved for N2LO approximation.
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Two-loop APT(E) for D(Q2): Truncation errors

Conclusion: If we add more terms N3LO — truncation error
increases.
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Two-loop APT(E) for D(Q2): Truncation errors

Conclusion: The best accuracy (better than 0.1%) is
achieved for N2LO approximation.
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APT(E) for D(Q2): Errors of modelling P (t)

We use model dmod
n =

cn−1(βn+1 − n)

β2 − 1
Γ(n)

with parameters β = 1.325 and c = 3.456 estimated by known
d̃n and with use of Lipatov asymptotics.

We apply it to resum APT series and obtain D(Q2).
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APT(E) for D(Q2): Errors of modelling P (t)

We use model dmod
n =

cn−1(βn+1 − n)

β2 − 1
Γ(n)

with parameters β = 1.325 and c = 3.456 estimated by known
d̃n and with use of Lipatov asymptotics.

We apply it to resum APT series and obtain D(Q2).

We deform our model for dn by using coefficients
βNNA = 1.322 and cNNA = 3.885

that deforms d4 = 27.5 → dNNA
4 = 20.4
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APT(E) for D(Q2): Errors of modelling P (t)

We use model dmod
n =

cn−1(βn+1 − n)

β2 − 1
Γ(n)

with parameters β = 1.325 and c = 3.456 estimated by known
d̃n and with use of Lipatov asymptotics.

We apply it to resum APT series and obtain D(Q2).

We deform our model for dn by using coefficients
βNNA = 1.322 and cNNA = 3.885

that deforms d4 = 27.5 → dNNA
4 = 20.4

We apply it to resum APT series and obtain DNNA(Q
2).
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APT(E) for D(Q2): Errors of modelling P (t)

Conclusion: The result of resummation is stable to the vari-
ations of higher-order coefficients: deviation is of the ord er
of 0.1%.
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Application

to
Higgs boson decay
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Higgs boson decay into bb̄-pair

This decay can be expressed in QCD by means of the
correlator of quark scalar currents JS(x) = : b̄(x)b(x):

Π(Q2) = (4π)2i

∫∫∫
dxeiqx〈0| T [ JS(x)JS(0) ] |0〉

in terms of discontinuity of its imaginary part

RS(s) = Im Π(−s− iε)/(2π s) ,

so that

ΓH→bb(MH) =
GF

4
√
2π

MH m2
b(MH)RS(s = M2

H) .
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FAPT(M) analysis of RS

Running mass m(Q2) is described by the RG equation

m2(Q2) = m̂2αν0

s (Q2)

[
1 +

c1b0αs(Q
2)

4π2

]ν1

.

with RG-invariant mass m̂2 (for b-quark m̂b ≈ 8.53 GeV) and
ν0 = 1.04, ν1 = 1.86.
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FAPT(M) analysis of RS

Running mass m(Q2) is described by the RG equation

m2(Q2) = m̂2αν0

s (Q2)

[
1 +

c1b0αs(Q
2)

4π2

]ν1

.

with RG-invariant mass m̂2 (for b-quark m̂b ≈ 8.53 GeV) and
ν0 = 1.04, ν1 = 1.86. This gives us

[
3 m̂2

b

]−1
D̃S(Q

2) = αν0

s (Q2) +
∑∑∑

m>0

dm

πm
αm+ν0

s (Q2) .
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FAPT(M) analysis of RS

Running mass m(Q2) is described by the RG equation

m2(Q2) = m̂2αν0

s (Q2)

[
1 +

c1b0αs(Q
2)

4π2

]ν1

.

with RG-invariant mass m̂2 (for b-quark m̂b ≈ 8.53 GeV) and
ν0 = 1.04, ν1 = 1.86. This gives us

[
3 m̂2

b

]−1
D̃S(Q

2) = αν0

s (Q2) +
∑∑∑

m>0

dm

πm
αm+ν0

s (Q2) .

In 1-loop FAPT(M) we obtain

R̃(1);N

S [L] = 3m̂2

[
A

(1);glob
ν0

[L] +

N∑∑∑

m>0

dm

πm
A

(1);glob
m+ν0

[L]

]
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FAPT(M) analysis of RS

Running mass m(Q2) is described by the RG equation

m2(Q2) = m̂2αν0

s (Q2)

[
1 +

c1b0αs(Q
2)

4π2

]ν1

.

with RG-invariant mass m̂2 (for b-quark m̂b ≈ 8.53 GeV) and
ν0 = 1.04, ν1 = 1.86. This gives us

[
3 m̂2

b

]−1
D̃S(Q

2) = αν0

s (Q2) +
∑∑∑

m>0

dm

πm
αm+ν0

s (Q2) .

In 2-loop FAPT(M) we obtain

R̃(2);N

S [L] = 3m̂2

[
B

(2);glob
ν0,ν1

[L] +

N∑∑∑

m>0

dm

πm
B

(2);glob
m+ν0,ν1

[L]

]
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Model for perturbative coefficients

Coefficients of our series, d̃m = dm/d1, with d1 = 17/3:

Model d̃1 d̃2 d̃3 d̃4 d̃5

pQCD 1 7.42 62.3 —
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Model for perturbative coefficients

Coefficients of our series, d̃m = dm/d1, with d1 = 17/3:

Model d̃1 d̃2 d̃3 d̃4 d̃5

pQCD 1 7.42 62.3 —
c = 2.5, β = −0.48 1 7.42 62.3

We use model d̃mod
n =

cn−1(β Γ(n) + Γ(n + 1))

β + 1

with parameters β and c estimated by known d̃n

and with use of Lipatov asymptotics.
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Model for perturbative coefficients

Coefficients of our series, d̃m = dm/d1, with d1 = 17/3:

Model d̃1 d̃2 d̃3 d̃4 d̃5

pQCD 1 7.42 62.3 620 —
c = 2.5, β = −0.48 1 7.42 62.3 662 —

We use model d̃mod
n =

cn−1(β Γ(n) + Γ(n + 1))

β + 1

with parameters β and c estimated by known d̃n

and with use of Lipatov asymptotics.
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Model for perturbative coefficients

Coefficients of our series, d̃m = dm/d1, with d1 = 17/3:

Model d̃1 d̃2 d̃3 d̃4 d̃5

pQCD 1 7.42 62.3 620 —
c = 2.5, β = −0.48 1 7.42 62.3 662 —
c = 2.4, β = −0.52 1 7.50 61.1 625

We use model d̃mod
n =

cn−1(β Γ(n) + Γ(n + 1))

β + 1

with parameters β and c estimated by known d̃n

and with use of Lipatov asymptotics.
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Model for perturbative coefficients

Coefficients of our series, d̃m = dm/d1, with d1 = 17/3:

Model d̃1 d̃2 d̃3 d̃4 d̃5

pQCD 1 7.42 62.3 620 —
c = 2.5, β = −0.48 1 7.42 62.3 662 —
c = 2.4, β = −0.52 1 7.50 61.1 625 7826

We use model d̃mod
n =

cn−1(β Γ(n) + Γ(n + 1))

β + 1

with parameters β and c estimated by known d̃n

and with use of Lipatov asymptotics.
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Model for perturbative coefficients

Coefficients of our series, d̃m = dm/d1, with d1 = 17/3:

Model d̃1 d̃2 d̃3 d̃4 d̃5

pQCD 1 7.42 62.3 620 —
c = 2.5, β = −0.48 1 7.42 62.3 662 —
c = 2.4, β = −0.52 1 7.50 61.1 625 7826

“PMS” model — — 64.8 547 7782

We use model d̃mod
n =

cn−1(β Γ(n) + Γ(n + 1))

β + 1

with parameters β and c estimated by known d̃n

and with use of Lipatov asymptotics.
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FAPT(M) for ΓH→b̄b(mH): Truncation errors

We define relative errors of series truncation at N th term:

∆N [L] = 1− R̃(2;N)

S [L]/R̃(2;∞)

S [L]

10 10.5 11 11.5 12

0.005

0.01

0.015

0.02

0.025

0.03

0.035

L

∆2[L]

∆3[L]
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FAPT(M) for ΓH→b̄b(mH): Truncation errors

We define relative errors of series truncation at N th term:

∆N [L] = 1− R̃(2;N)

S [L]/R̃(2;∞)

S [L]
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0.015
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FAPT(M) for ΓH→b̄b(mH): Truncation errors

We define relative errors of series truncation at N th term:

∆N [L] = 1− R̃(2;N)

S [L]/R̃(2;∞)

S [L]

10 10.5 11 11.5 12

0.005

0.01

0.015

0.02

0.025

0.03

0.035

L

∆2[L]

∆3[L]

∆4[L]

∆5[L]
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FAPT(M) for ΓH→b̄b(mH): Truncation errors

Conclusion: If we need accuracy better than 0.5% —
only then we need to calculate the 5-th correction.
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FAPT(M) for ΓH→b̄b(mH): Truncation errors

Conclusion: If we need accuracy better than 0.5% —
only then we need to calculate the 5-th correction.

But profit will be tiny — instead of 0.5% one’ll obtain 0.3%!
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FAPT(M) for ΓH→b̄b(mH): Truncation errors

Conclusion: If we need accuracy of the order 0.5% —
then we need to take into account up to the 4-th correction.

Note: uncertainty due to P (t)-modelling is small ... 0.6%.

100 120 140 160 180

2

2.5

3

3.5

100 120 140 160 180

2

2.5

3

3.5

MH [GeV]

Γ∞

H→b̄b
[MeV]

Higher-loop Resummation in QCD FAPT – p. 44



New Trends in HEP’11 @Alushta (Crimea)

FAPT(M) for ΓH→b̄b(mH): Truncation errors

Conclusion: If we need accuracy of the order 1% —
then we need to take into account up to the 3-rd correction
— in agreement with Kataev&Kim [0902.1442] .
Note: RG-invariant mass uncertainty ∼ 2%.
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FAPT(M) for ΓH→b̄b(mH): Truncation errors

Conclusion: If we need accuracy of the order 1% —
then we need to take into account up to the 3-rd correction
— in agreement with Kataev&Kim [0902.1442] .
Note: overall uncertainty ∼ 3% .
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Resummation for ΓH→b̄b(mH): Loop orders

Comparison of 1- ( upper strip ) and 2- ( lower strip ) loop results.
We observe a 5% reduction of the two-loop estimate.

MH [GeV]

Γ∞

H→b̄b
[MeV]
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CONCLUSIONS

FAPT provides effective tool to apply APT approach for
renormgroup improved perturbative amplitudes.
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CONCLUSIONS

FAPT provides effective tool to apply APT approach for
renormgroup improved perturbative amplitudes.

Both APT and FAPT produce finite resummed answers for
perturbative quantities if we know generating function
P (t) for PT coefficients.

Higher-loop Resummation in QCD FAPT – p. 46



New Trends in HEP’11 @Alushta (Crimea)

CONCLUSIONS

FAPT provides effective tool to apply APT approach for
renormgroup improved perturbative amplitudes.

Both APT and FAPT produce finite resummed answers for
perturbative quantities if we know generating function
P (t) for PT coefficients.

Using quite simple model generating function P (t) for
Adler function D(Q2) we show that already at N2LO we
have accuracy of the order 0.1%...
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CONCLUSIONS

FAPT provides effective tool to apply APT approach for
renormgroup improved perturbative amplitudes.

Both APT and FAPT produce finite resummed answers for
perturbative quantities if we know generating function
P (t) for PT coefficients.

Using quite simple model generating function P (t) for
Adler function D(Q2) we show that already at N2LO we
have accuracy of the order 0.1%...

... and for Higgs boson decay H → bb at N3LO — of the
order of:
1% — due to truncation error
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CONCLUSIONS

FAPT provides effective tool to apply APT approach for
renormgroup improved perturbative amplitudes.

Both APT and FAPT produce finite resummed answers for
perturbative quantities if we know generating function
P (t) for PT coefficients.

Using quite simple model generating function P (t) for
Adler function D(Q2) we show that already at N2LO we
have accuracy of the order 0.1%...

... and for Higgs boson decay H → bb at N3LO — of the
order of:
1% — due to truncation error... ;
2% — due to RG-invariant mass uncertainty.
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