ATLAS results on Standard Model and Heavy Ions

Frédéric Derue, LPNHE Paris (on behalf of the ATLAS collaboration)

New trends in High Energy Physics Alushta, Crimea, Ukraine, September 3-10, 2011

SM proton-proton results

e/μ/γ/jets results W/Z results

Heavy lons results W/Z production dijet asymmetry

Data collection

2010 operation : gradual (~exponential) ramp up of instantaneous luminosity. One month of data taking for Heavy lons by end of 2010

2011 : sustained delivery of integrated luminosity peak luminosity 2.37×10³³ cm⁻² s⁻¹ best in a day : >95 pb⁻¹

> Many results from 2010 data Some results with up to 1.2 fb⁻¹

Crimea 2011, 04/09/2011

The ATLAS detector

Inner Detector ($|\eta|$ <2.5) : Si pixel, SCT, TRT Tracking and vertexing. e/ π separation σ/p_{T} ~0.038% p_T (GeV) \oplus 1.5% **Muon spectrometer (** $|\eta|$ **<2.7)** : air-cores toroids with gas-based chambers. Trigger and measurement. Momentum resolution <10% up to E μ ~1 TeV

EM calorimeter (|\eta|<3.2) : Pb/LAr accordion Trigger and e/\gamma reco and id \sigma/E~10%/\sqrt{E} (GeV)\oplus0.7%

ZDC (|η|>8.3) : Zero Degree Calorimeter for Heavy lons studies

Trigger

p-p collisions

- ★ standard triggers for physics, e.g
 - \Rightarrow inclusive e p_T>20 GeV, μ p_T>18 GeV
 - ➡ inclusive jet p_T>180 GeV
 - ➡ ETmiss > 60 GeV
 - ➡ di-photon p_T>20 GeV
 - ÷ ...
- ★ such triggers are not prescaled
- supplemented by supporting and monitoring triggers
- ★ sophisticated and flexible menus

trigger	L1 item	L1 Rate (Hz)	EF Rate (Hz)
e20_medium	EM14	8500	50
2e12_medium	2EM7	5700	1
g80_loose	EM30	700	3
2g20_loose	2EM14	750	2
mu18	MU10	5300	40
2mu10	2MU10	100	1
xe60	XE40	300	4
j180	J75	200	6
tau29medium_xe35	TAU11_XE20	3800	6
tau16_e15	TAU6_EM10	7500	6
j75_xe45	J50_XE20	500	10

Pb-Pb collisions

- coincidence in (Level 1) Minimum
 Bias Trigger Scintillators (2.1<|η|<3.9)
- coincidence in Zero Degree Calorimeter (|η|>8.3)

Standard Model results

0

0. 1

180

EXPERIMEN

e/µ from Heavy Flavour cross section

 $\Delta \sigma_{I}$

Differential cross section

- ★ N_{sig} : number of signal lepton with p_T in bin i of width Γ_i
- * $\epsilon_{trigger}$ and $\epsilon_{reco+ID}$ are the efficiency of trigger and reconstruction level
- ★ $C_{migration}$ is the bin migration correction factor, ratio of the number of charged leptons in bin i of true p_T and the number in the same bin of reconstructed p_T
- ★ J∠dt : integrated luminosity

Analysis (1.4 pb⁻¹)

- ★ selection of non isolated electrons and muons restricted in E_T=7-26 GeV and $|\eta| < 2.5$, excluding 1.37< $|\eta| < 1.52$
- ★ $\varepsilon_{\text{reco+ID}}$ estimated from Tag&Probe and simulation
- ★ C_{migration} is estimated from Pythia

Results

Good understanding of both inclusive e and μ by ATLAS

Crimea 2011, 04/09/2011

6

 $\frac{\Delta \sigma_{I}}{\Delta p_{\mathrm{T}_{I}}} = \frac{N_{\mathrm{sig}_{I}}}{\Gamma_{\mathrm{bin}_{I}} \cdot \int \mathcal{L} dt} \cdot \frac{C_{\mathrm{migration}_{I}}}{\epsilon_{(\mathrm{reco+ID})_{I}} \cdot \epsilon_{\mathrm{trigger}_{I}}}$

γ inclusive and γγ production

Crimea 2011, 04/09/2011

jet inclusive cross section

anti- k_T jets with R=0.4 or 0.6 20 GeV<p_T<1.5 TeV

good agreement between NLO predictions and data

b-jet production cross section

jets $20 < p_T < 400$ GeV, |y| < 2.1b-tag : presence of secondary vertex or muon p_T rel (p_T relative to jet axis)

Crimea 2011, 04/09/2011

W/Z boson

- ✤ W/Z bosons are used to study detector response
- ★ dominant signal and/or background in other analyses
- ★ more energy and cross section than at Tevatron

W/Z production cross section

- ★ Drell-Yan production of W and Z bosons calculable to high orders in pQCD
- higher order QCD corrections modify the cross section by 30-40% and have visible effect on kinematics

W/Z + jets

- ★ σ (W/Z+≥Njets) test of higher order calculations and pQCD
- ★ production of W/Z + b-jets is important for other studies

diboson production

- ★ cross section measurement
- determination of Triple Gauge Couplings to provide a model independent test for New Physics

Use leptonic decay channels, mostly e and μ

W and Z selection

$W \rightarrow Iv$

 \star one e/ μ with p_T>20 GeV ★ E_T^{miss} >25 GeV, $m_T(I, E_T^{miss})$ >40 GeV ★ QCD from data fitting $E_T^{miss}(e)$ and studying control regions in iso- E_T^{miss} plane (μ) ★ ~131-140k candidates with 7-9% bkg

in 2010, much more in 2011 (see plot)

Z→II

★ two e/μ with p_τ>20 GeV ★ m_µ=66-116 GeV

- ★ QCD from data fitting m_{II} line shape
 - control regions in (iso, m₁) plane
- ★ ~10-12k candidates with 1-2% bkg

in 2010, much more in 2011 (see plot)

experimental uncertainties reduced by using data driven methods to control efficiencies, backgrounds and signal shapes experimental and theoretical uncertainties of same size

Crimea 2011, 04/09/2011

11

Crimea 2011, 04/09/2011

W differential charge asymmetry

W lepton charge asymmetry

- ★ η (W[±]) measurements constrain PDF of u and d
- ★ ≠u,d momentum W[±] produced asymmetrically

 - but V-A interaction reduces the observable asymmetry in the lepton rapidity distributions
- experimentally, a clean way tbuo do this study is to measure the charge asymmetry as a function of the lepton pseudo-rapidity

$$A(\eta_l) = \frac{\sigma^{W^+}(\eta_l) - \sigma^{W^-}(\eta_l)}{\sigma^{W^+}(\eta_l) + \sigma^{W^-}(\eta_l)}$$

 this measurement is rather sensitive to PDFs because most systematic uncertainties cancel in the ratio

Reasonable agreement with different PDFs predictions

ATLAS-CONF-2011-129 LHCb-CONF-2011-039 CMS-EWK-10-006

Z and W p_T measurement

At LO $p_T^{W/Z}$ =0; non zero value is generated through the hadronic recoil of ISR p_T^R

Z p_T ★ Z provide critical control sample for W ★ to model high-p_T lepton kinematics ★ p^Z_T reconstructed from 2 leptons

* detector and FSR effects removed

★ for precise m_W measurement ★cannot reconstruct p_T^W easely (v in final state) ★ p_T^W reconstructed from p_T^R

Crimea 2011, 04/09/2011

W/Z+jets production at LHC

W+b-jet

- ★ 1st measurement in exclusive jet bins
- ★ uncertainty : ~20% stat., ~25% syst.

★ dominant systematics

- b-tagging & SV mass template ≈16%
- top background ≈12%
- QCD background ≈7%
- → W + b-jet modeling ≈10%
- → jet + b-jet energy scale ≈7%

Paper in preparation More details in EPS talk by A. Messina

W,Z and di-bosons cross sections

Overall good agreement between measurements and theory

Crimea 2011, 04/09/2011

Heavy Ions results

Heavy lons collision with a candidate $Z \rightarrow ee$ events, $m_{ee} \sim 104 \text{ GeV}$

Ŷ

Z production in Pb-Pb collisions

Analysis

- ★ Z→µµ channel explored
- ★ integrated luminosity analyzed : 7 μb⁻¹
- ★ muons with p_T >20 GeV and $|\eta|$ <2.5
- ★ 38 candidates in the mass window 66-116 GeV

Rpc : yield scaled by the ratio of the mean number of binary collisions in each centrality bin to that of the most peripherical one

W production in Pb-Pb collisions

Analysis (W→μν) Analysis (W→μν)

- \star veto dimuons with m_{uu} >60 GeV (DY & Z candidates) and decays in flight
- ★ build a template from $W \rightarrow \mu v MC@2.76$ TeV pp
- ★ use a function to describe background
- ★ find the best estimate of the number of W
 ATLAS-CONF-2011-078

R_{pc} result is consistent with no W suppression, as expected

dijets in Pb-Pb collisions

Selection

Phys. Rev. Lett. B 105:252303, 2010

★ jets from anti-kT algorithm R=0.4, $\Delta \phi > \pi/2$, ~1700 events with ET>100 GeV, $|\eta| < 2.8$

• ET balance

$$A_{J} = \frac{E_{T1} - E_{T2}}{E_{T1} + E_{T2}} \qquad \begin{array}{c} E_{T1} > 100 \, GeV \\ E_{T2} > 25 \, GeV \end{array}$$

dijets are expected to have $A_J \sim 0$ with deviations expected from gluon radiation falling outside the jet cone, from instrumental effects. Energy loss in the medium could lead to much stronger deviations in the reconstructed energy balance

- Pythia+Hijing illustrate effect of Heavy lons background on jet reconstruction, not any underlying physics process
- the dijet asymmetry in peripheral Pb-Pb events is similar to that in both p-p and simulated events; however, as the events become more central, the Pb-Pb data distributions develop different characteristics, indicating an increased rate of highly asymmetric dijet events
- ★ R varied to 0.2, 0.6 : large asymmetry not reduced
- ★ jets remain back-to-back

Crimea 2011, 04/09/2011

First indication of jet suppression

Conclusion

General comments

- * ATLAS experiment at LHC has collected so far >2.5 fb⁻¹ of pp collision data and 9.2 μb⁻¹ of Pb-Pb data
- ★ detector is performing well and only part of data analyzed yet

Standard Model results

- * brief overview of a few results, from cross sections of "simple objects" $(e,\mu,\gamma,jets)$ to W/Z events
- ★ much more results available
- ★ overall good agreement between data measurement and theory expectations

Heavy lons results

- ★ i have flashed only very few results obtained by ATLAS
- ★ leptonic probes : Z and W productions consistent with simple scaling with N_{coll}
- ★ high p_T observables : jet production suppressed by a factor 2 in central collisions

References

https://twiki.cern.ch/twiki/bin/view/AtlasPublic https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES https://twiki.cern.ch/twiki/bin/view/AtlasPublic/StandardModelPublicCollisionPlots

Back up slides

e/µ from Heavy Flavour cross section

For muons with $p_T > 25$ GeV a deviation from the NLO central prediction is seen, indicating the sensitivity of the data to the NLL high- p_T resummation, for the first time in heavy-flavour production at a hadron collider

Crimea 2011, 04/09/2011

γγ **production**

Ingredients

N_{obs} : number of events observed in the signal region

$$\sigma_{fid} = \frac{N - B}{C_{W/Z} \cdot L_{int}}, \quad \sigma_{tot} = \frac{\sigma_{fid}}{A_{W/Z}}$$

- ★ N_{bkg} : estimated number of background events
- * A : kinematic acceptance factor, estimated with generator level Monte Carlo
- C : summarizes reconstruction efficiency, estimated with reconstructed Monte Carlo, corrected with scale factors
- ★ L_{int} : integrated luminosity

Fiducial cross section

- ★ corrected for efficiency factor C
- ★ adjusted to data/Monte Carlo differences

Total cross section

★ corrected for acceptance factor A

QCD estimation

- $W \rightarrow e\nu$: template fit to $E_{\rm T}^{
 m miss}$. Template derived from data with inverted electron ID and isolation.
 - $Z \rightarrow ee$: template fit to $m_{\ell\ell}$ to a sample with looser electron ID, extrapolated to the signal region.
- $W
 ightarrow \mu
 u$: matrix method using track isolation.

 $Z \rightarrow \mu \mu$: ABCD method with track isolation in $m_{\mu\mu}$ side-band.

Systematic uncertainties for W/Z selection

- $\delta \sigma_{W \rightarrow e\nu}$ of 1.8 2.1%, dominated by electron reconstruction, identification and $E_{\rm T}^{\rm miss}$
- $\delta \sigma_{Z \rightarrow ee}$ of 2.7%, dominated by el. reconstruction and identification

Electron channels (%)	W^{\pm}	W^+	W^{-}	Z
Trigger	0.4	0.4	0.4	<0.1
Reconstruction	0.8	0.8	0.8	1.6
Identification	0.9	0.8	1.1	1.8
Isolation	0.3	0.3	0.3	_
Energy scale and resolution	0.5	0.5	0.5	0.2
Defective LAr channels	0.4	0.4	0.4	0.8
Charge misidentification	<0.1	0.1	0.1	0.6
$E_{\mathrm{T}}^{\mathrm{miss}}$	0.8	0.7	1.0	_
Pile-up	0.3	0.3	0.3	0.3
Vertex position	0.1	0.1	0.1	0.1
QCD Background	0.4	0.4	0.4	0.7
$EWK+t\bar{t}$ Background	0.2	0.2	0.2	<0.1
$C_{W/Z}$ Theor. uncertainty	0.6	0.6	0.6	0.3
Total Exp. uncertainty	1.8	1.8	2.0	2.7
$A_{W/Z}$ Theor. uncertainty	1.4	1.6	1.9	1.9
Total excluding Luminosity	2.3	2.4	2.8	3.3

- $\delta \sigma_{W \rightarrow \mu \nu}$ of 1.6 1.7%, dominated by muon efficiencies, QCD background and $E_{\rm T}^{\rm miss}$
- $\delta \sigma_{Z \rightarrow \mu \mu}$ of 0.9%, dominated by muon efficiencies

Muon channels (%)	W^{\pm}	W^+	W^{-}	Z
Trigger	0.5	0.5	0.5	0.1
Reconstruction	0.4	0.3	0.3	0.6
Isolation	0.2	0.1	0.2	0.3
p_{T} Resolution	0.04	0.03	0.05	0.02
p_{T} Scale	0.4	0.6	0.6	0.2
$E_{\mathrm{T}}^{\mathrm{miss}}$	0.5	0.4	0.6	-
Pile-up	0.3	0.3	0.3	0.3
Vertex position	0.1	0.1	0.1	0.1
QCD Background	0.6	0.5	0.8	0.3
$EWK+t\bar{t}$ Background	0.4	0.3	0.4	0.02
$C_{W/Z}$ Theor. uncertainty	0.8	0.8	0.7	0.3
Total Exp. uncertainty	1.6	1.7	1.7	0.9
$A_{W/Z}$ Theor. uncertainty	1.4	1.6	2.0	2.0
Total excluding Luminosity	2.1	2.3	2.6	2.2

W production cross section vs theory

Total cross sections

- verall remarkable agreement with NLLO PDF predictions
- ★ a few differences between different PDFs (w/ only 68% CL PDF errors)
- comparing total cross sections, the acceptance uncertainty accounts for effect of different PDFs

on the unmeasured phase space

Fiducial cross section

- comparing in the fiducial region disentangles theory and experimental effects
- this enables more interesting comparisons among different PDF sets
- first dedicated calculation of NNLO predictions based on FEWZ and DYNNLO with experimental cuts

Z production cross section vs theory

Total cross sections

- verall remarkable agreement with NLLO PDF predictions
- ★ a few differences between different PDFs (w/ only 68% CL PDF errors)
- ★ comparing total cross sections, the acceptance uncertainty accounts for effect of different PDFs

on the unmeasured phase space

Fiducial cross section

- comparing in the fiducial region disentangles theory and experimental effects
- this enables more interesting comparisons among different PDF sets
- first dedicated calculation of NNLO predictions based on FEWZ and DYNNLO with experimental cuts

W/Z production cross sections vs theory

- W^{\pm}/Z , W^{+}/W^{-} ratios profit from exp. and theor. systematics cancellation
- W^{\pm}/Z ratio measured with total uncert. of $1.5\,\%$, W^{+}/W^{-} with $1.2\,\%$

Comparison with theory : lepton universality

• New measurements of the ratios of the e and μ branching fractions

$$R_W = \frac{\sigma_W^e}{\sigma_W^\mu} = \frac{Br(W \to e\nu)}{Br(W \to \mu\nu)} = 1.006 \pm 0.004 \,(\text{sta}) \pm 0.006 \,(\text{unc}) \pm 0.023 \,(\text{cor}) = 1.006 \pm 0.024 \\R_Z = \frac{\sigma_Z^e}{\sigma_Z^\mu} = \frac{Br(Z \to ee)}{Br(Z \to \mu\mu)} = 1.018 \pm 0.014 \,(\text{sta}) \pm 0.016 \,(\text{unc}) \pm 0.028 \,(\text{cor}) = 1.018 \pm 0.031 \\$$

- Inserting R_Z PDG value into the present measurement for a combined cross section analysis
- \Rightarrow reduction of correlated R_W systematic uncertainty
- \Rightarrow improved result of $R_W = 0.999 \pm 0.021.$

W+jets : e and µ channels

Z+jets : e and μ channels

Z+b measurements

$$\sigma = \frac{N_b}{C_e \times \mathcal{L}_e + C_\mu \times \mathcal{L}_\mu}$$

- Inclusive b-jet production cross section in association with a Z boson
- Jet fitted yield is corrected for all detector effects with MC LO matched prediction for Zjet (including heavy flavour) from ALPGEN and SHERPA
- uncertainty: ≈ 20% stat. and ≈23% syst.
- dominant systematics:
 - b-tagging & SV mass template $\approx 10\%$
 - Z+b-jet modeling ≈ 10%
 - Jet + bjet energy scale ≈4%
- MCFM in good agreement with data within uncertainty

Experiment $3.55^{+0.82}_{-0.74}(\text{stat})^{+0.73}_{-0.55}(\text{syst}) \pm 0.12(\text{lumi}) \text{ pb}$

MCFM	3.40 ± 0.44 pb
ALPGEN	2.23 ± 0.01 (stat only)pb
SHERPA	3.33 ± 0.04 (stat only) pb

Heavy di-boson production at LHC

Probes the electroweak gauge symmetry of the SM

- determination of Triple Gauge Boson Couplings provide a model Independent test for "new" physics
- measure "fiducial" cross sections to minimize the dependence on theoretical predictions
- ★ sensitivity increases with energy reach

Background to many searches Signal and background

- 🖈 use leptonic decays
 - -small branching ratios, low background
 - \clubsuit tau decays contribute to e/μ channels

★ clean but small signal

Crimea 2011

Bckgnd	WW	WZ	ZZ
top	<u>35%</u>	12%	incl. DD
W+jets	<u>30%</u>	0%	incl. DD
Z+jets	32%	<u>52%</u>	incl. DD
vv	4%	28%	incl. DD
Z+gamma	incl. in VV	8%	incl. DD
<u>S/B</u>	1.4	4	30
S/sqrt(B)	18	12	17
04/09/2011	2I+MET	3l+M _z +ME	T 2M _z

WW production

ATLAS-CONF-2011-107

 σ_{ww} = 48.2 \pm 4.0(stat) \pm 6.4(syst) \pm 1.8(lumi) pb.

ZZ production

ATLAS-CONF-2011-107

WZ production

ATLAS-CONF-2011-099

