

Outline

Search for New Physics via a Measurement of the

Transverse Muon Polarization in $K^+ \rightarrow \pi^0 \mu^+ v_{\mu}$ Decay

Michael D. Hasinoff University of British Columbia on behalf of the TREK--E06 collaboration

- Hadron Facility at J-PARC
- TREK Program TREK = Time Reversal Experiment with Kaons
 - Search for Time Reversal Symmetry Violation
 - Test of Lepton Universality
 - Search for Heavy Neutrinos
- TREK Apparatus -- R & D
- Status & Schedule

Lower intensity

J-PARC Hadron Hall

K1.1BR = K0.8 Beam Line Installation

- K1.1BR completed in summer 2010 using the supplementary budget of FY09
- Commissioned in Oct. 2010 by the TREK collaboration
 - ESS Length of 2.0m to be increased to 2.5m
 - Length Q8-FF of 3.3m to be reduced to 1.5m (remove iron shielding wall)

Stopped K⁺ Experiments K1.1BR

• E06 (TREK)

"Measurement of T-violating transverse muon polarization (P_T) in $K^+ \rightarrow \pi^0 \mu^+ \nu$ decay" Stage-1 270 kW

• P36 (LFU)

"Measurement of $R_K = \Gamma(K^+ \rightarrow e^+ \nu) / \Gamma(K^+ \rightarrow \mu^+ \nu)$ and search for heavy sterile neutrinos" Stage-1 (PAC11-Jan'11) 30 kW

TREK Collaboration

CANADA

University of British Columbia University of Manitoba Universite de Montreal University of Saskatchewan TRIUMF

USA

Massachusetts Inst. of Technology (MIT) University of South Carolina Iowa State University Hampton University Jefferson Laboratory

RUSSIA

Russian Academy of Sciences (RAS) Institute for Nuclear Research (INR)--Moscow

JAPAN

Osaka University National Defense Academy Tohoku University High Energy Accelerator Research Org. (KEK) Kyoto University Tokyo Institute of Technology (TiTech)

VIETNAM University of Natural Sciences

New collaborators are welcome!

• P_T is T-odd, and spurious effects from final state interaction are small: $P_T(FSI) < 10^{-5}$ Non-zero P_T is a signature of T violation.

• Standard Model (SM) contribution to P_T : $P_T(SM) < 10^{-7}$

Hence P_T in the range $10^{-3} - 10^{-5}$ is a sensitive probe of CP violation beyond the SM.

• There are theoretical models of new physics which allow a sizable P_{τ} value without conflicting with other experimental constraints.

The TREK experiment aims for a sensitivity of 10⁻⁴

TREK Experimental Apparatus

$\kappa^+ \rightarrow \pi^0 \mu^+ \nu$ Use an upgraded E246 detector

 P_{T} is measured as the azimuthal asymmetry A_{e}^{+} of the μ^{+} decay positrons

Sept. 4 2011

New Directions in H.E. Physics

 $P_{\tau} = -0.0017 \pm 0.0023(stat) \pm 0.0011(syst)$ $|P_{\tau}| < 0.005 : 90\% C.L.$ $Im\xi = -0.0053 \pm 0.0071(stat) \pm 0.0036(syst)$ $|Im\xi| < 0.016 : 90\% C.L.$ Statistic

Statistical error dominates

Expected sensitivity -- TREK

We are aiming for a sensitivity of $\delta P_T \sim 10^{-4}$

• $\delta P_T^{\text{stat}} \sim 0.05 \, \delta P_T^{\text{stat}} (E246) \sim 10^{-4}$: 1.4 x 10⁷ sec runtime

New Physics: Model predictions for P_T

Three Higgs doublet model

$$L = (2\sqrt{2}G_F)^{\frac{1}{2}} \sum_{i=1}^{2} \{\alpha_i \bar{u_L} V M_D d_R H_i^+ + \beta_i \bar{u_R} M_U V d_L H_i^+ + \gamma_i \bar{\nu_L} M_E e_R H_i^+ \} + \text{h.c.},$$

c.f. d_n , $b \rightarrow s\gamma \propto Im(\alpha_1\beta_1^*)$, $(\alpha_1\beta_1^*)$ $Im(\alpha_{1}\beta_{1}^{*}) = -v_{2}^{2}/v_{3}^{2}Im(\gamma_{1}\alpha_{1}^{*})$ Higgs field v.e.v.

 $B \rightarrow X \tau v$ and $B \rightarrow \tau v$ at Super-Belle corresponds to $P_{\rm T}$ < 3 x 10⁻⁴ c.f. TREK goal : $P_T \le 1 \ge 10^{-4}$

 P_{T} is most stringent constraint for $Im(\gamma_{1}\alpha_{1}^{*})$!!

New Directions in H.E. Physics

Lepton universality in $K_{\ell 2}$ and $\pi_{\ell 2}$ decays

$$R_{K}^{SM} = \frac{\Gamma(K^{+} \to e^{+}\nu)}{\Gamma(K^{+} \to \mu^{+}\nu)} = \frac{m_{e}^{2}}{m_{\mu}^{2}} \left(\frac{m_{K}^{2} - m_{e}^{2}}{m_{K}^{2} - m_{\mu}^{2}}\right)^{2} (1 + \delta_{r})$$

- Highly precise SM values $R_{K}^{SM} = (2.477 \pm 0.001) \times 10^{-5}$ $R_{\pi}^{SM} = (12.352 \pm 0.004) \times 10^{-5}$ U W V_{e}, v_{μ} V_{e}, v_{μ} V_{e}, v_{μ}
- High sensitivity to LFV beyond SM

e.g. MSSM with charged-Higgs SUSY-LFV

 $R_{K}^{LFV} = R_{K}^{SM} \left(1 + \frac{m_{K}^{4}}{M_{H^{+}}^{4}} \cdot \frac{m_{\tau}^{2}}{m_{e}^{2}} \Delta_{13}^{2} \tan^{6} \beta \right) \Longrightarrow \mathsf{R}_{K}^{\mathsf{LFV}} \sim \mathsf{R}_{K}^{\mathsf{SM}} (1 \pm 0.013)$

Current experimental precision (NA62, KLOE)

 R_{K} = (2.488 ± 0.012) x 10⁻⁵, 1.1 σ dev., $\Delta R_{K}/R_{K}$ = 0.5% \implies 0.4%

Improve precision to ~ 0.2%, presentation to PAC11

Lepton Flavour Universality

e/μ Identification -- LFU

- Momentum measurement of e⁺, μ⁺
- TOF measurement between TOF₁ and TOF₂
- e⁺ trigger by aerogel Cherenkov detector

TREK/E06 Tracking Upgrade

GEM technology – in collaboration with Jefferson Lab, Hampton U. and MIT

C0 Cylindrical GEM for TREK

- Vertex tracking near target, $\delta < 0.1$ mm
- Very high rate capability > 1 kHz/mm²
- Radiation-hardness >> 10⁷ particles/mm²

R&D(1) APD Readout for CsI(TI)

new requirement

too slow

 Both 1 and 9 module tests have been performed using an e+ beam at Tohoku Univ. to check the energy resolution and high-rate performance of APD readout

R&D(2) Active Muon Polarimeter

- Full angular acceptance for positrons 10x higher than in E-246
- Determination of decay vertex background-free measurement
- Measurement of e⁺ angle and approx. energy higher analyzing power
- Improved field alignment suppressed systematic error

Full-size prototype was tested at TRIUMF in Nov. 2009

R&D(3) Active scintillating fibre target

One element

Baseline design

c.f. E246 Ring counters PSI FAST target

R&D(3) – Active Scintillating Fiber Target

Light Guide: Kuraray Y11 WLS Fibre

Readout:

SiPMT (Hamamatsu MMPC) 1x1 mm² / 400 px Gain 7.5x10⁵

S. Bianchin

PANIC 2011 (July 24th - 29th 2011)

R&D(4) MPPC Pulses

Sr source $\leq 80 \text{ mV}$

UpgradeTimeline

Summary

UBC

- TREK at J-PARC is gaining momentum
- "K1.1BR" secondary beamline has been commissioned
- Measurement of the T-violating transverse muon polarization in K_{µ3} decay (~2014)
 - Large potential for the discovery of New Physics
 - Upgrade of existing experimental setup of KEK E-246
- Measure K_{e2}/K_{µ2} ratio to test lepton universality (~2013)
- Search for heavy neutrinos
 Use E-246 apparatus with partial upgrades

New collaborators are welcome!

New Directions in H.E. Physics

J-PARC Mar 11 Earthquake Damage

Thank You

J-PARC Recovery Schedule (@2011.5.20)

Sept. 4 2011