

On the FIRST TOTEM RESULTS on ELASTIC pp SCATTERING: the FATE of the DIP

László L. Jenkovszky, jenk@bitp.kiev.ua

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

TOTEM 2011-01 22 June 2011 CERN-PH-EP-2011-101 26 June 2011

Elastic pp Scattering at the LHC at $\sqrt{s} = 7$ TeV.

The TOTEM Collaboration

G. Antchev*, P. Aspell⁸, I. Atanassov^{8,*}, V. Avati⁸, J. Baechler⁸, V. Berardi^{5b,5a}, M. Berretti^{7b}, M. Bozzo^{6b,6a}, E. Brücken^{3a,3b}, A. Buzzo^{6a}, F. Cafagna^{5a}, M. Calicchio^{5b,5a}, M. G. Catanesi^{5a}, C. Covaul⁹, M. Csanád^{4†}, T. Csörgö⁴, M. Deile⁸, E. Dimovasili⁸, M. Doubek^{1b}, K. Eggert⁹,
V.Eremin[‡], F. Ferro^{6a}, A. Fiergolski[§], F. Garcia^{3a}, S. Giani⁸, V. Greco^{7b,8}, L. Grzanka^{8,¶}, J. Heino^{3a}, T. Hilden^{3a,3b}, M. Janda^{1b}, J. Kašpar^{1a,8}, J. Kopal^{1a,8}, V. Kundrát^{1a}, K. Kurvinen^{3a}, S. Lami^{7a}, G. Latino^{7b}, R. Lauhakangas^{3a}, T. Leszko[§] E. Lippmaa², M. Lokajíček^{1a}, M. Lo Vetere^{6b,6a},
F. Lucas Rodríguez⁸, M. Macrí^{6a}, L. Magaletti^{5b,5a}, G. Magazzù^{7a}, A. Mercadante^{5b,5a}, M. Meucci^{7b}, S. Minutoli^{6a}, F. Nemes^{4,†} H. Niewiadomski⁸, E. Noschis⁸, T. Novak^{4,||}, E. Oliveri^{7b}, F. Oljemark^{3a,3b}, R. Orava^{3a,3b}, M. Oriunno^{8**}, K. Österberg^{3a,3b}, A.-L. Perrot⁸, P. Palazzi⁸, E. Pedreschi^{7a}, J. Petäjäjärvi^{3a}, J. Procházka^{1a}, M. Quinto^{5a}, E. Radermacher⁸, E. Radicioni^{5a}, F. Ravotti⁸, E. Robutti^{6a}, L. Ropelewski⁸, G. Ruggiero⁸, H. Saarikko^{3a,3b}, A. Santroni^{6b,6a}, A. Scribano^{7b}, G. Sette^{6b,6a}, W. Snoeys⁸, F. Spinella^{7a}, J. Sziklai⁴, C. Taylor⁹, N. Turini^{7b}, V. Vacek^{1b}, J. Welti^{3a,b}, M. Vítek^{1b}, J. Whitmore¹⁰.

Definitions

Necessary condition for **diffraction** (deviation from geometrical optics): $kR^2 >> 1$, where $k = 2\pi/\lambda$, λ is the wave length and R is the size of the obstacle (or hole) is

Fraunhofer diffr.: $kR^2/D \ll 1$,

Frenel diffr.: $kR^2/D \approx 1$, where D is the distance between the source and the detector. The case $kR^2/D >> 1$ corresponds to linear optics.

In high-energy, say, > 1GeV, experiments, Fraunhofer diffraction dominates: the obstacle, hole =detector is of 1Fm, while the distance between the source and the detector is practically infinite. (N.B.: At tha LHC, however, Fresnel diffraction may occur in the Coulomb region.) At the LHC, $\sqrt{14TeV}$, $R \approx$ 1Fm, $D \ 1cm$, hence $kR^2/D \approx 10^{-6}$, (compared with $\sqrt{50GeV}$, $\rightarrow kR^2/D \approx$ 10^{-9} at the ISR (CERN).

Diffraction extends in a huge span of wavelengths !

Ускорители протонов, антипротонов и ядер Протон антипротонные столкновения P+OSerpukhov ISR (CERN) SPS (CERN) RHIC (BNL) FNAL LHC (CERN) (1972)(1985) (2010) (1967)(1980)(1990) Years E (GeV) 10-20 22-63 500-600 200-1000 1 800 14 000 **P-O** Протон протонные столкновения Р-померон; О-оддерон

 $\ln M$ у

$$\sigma_t(s) = \frac{4\pi}{s} ImA(s, t = 0); \quad \frac{d\sigma}{dt} = \frac{\pi}{s^2} |A(s, t)|^2; \quad n(s);$$

$$\sigma_{el} = \int_{t_{min\approx-s/2\approx\infty}}^{t_{thr,\approx0}} \frac{d\sigma}{dt}; \quad \sigma_{in} = \sigma_t - \sigma_{el}; \quad B(s, t) = \frac{d}{dt} \ln\left(\frac{d\sigma}{dt}\right);$$

$$A_{pp}^{p\bar{p}}(s, t) = P(s, t) \pm O(s, t) + f(s, t) \pm \omega(s, t) \rightarrow_{LHC} \approx P(s, t) \pm O(s, t),$$

where $P, \quad O, \quad f. \quad \omega \text{ are the Pomeron, odderon}$
and non-leading Reggeon contributions.

α(0)\C	+	-
1	Ρ	0
1/2	f	ω

Central and Multigap Diffraction

- **Double Diffraction Dissociation**
 - > One central gap
- Double Pomeron Exchange
 - > Two forward gaps
- SDD: Single+Double Diffraction
 - > One forward gap+ one central gap

Rate for second diffractive gap is not suppressed!

Total Cross-Section

Elastic Scattering

CNI region: $|f_c| \sim |f_N| \rightarrow @$ LHC: -t ~ 6.5 10⁻⁴ GeV²; $\theta_{min} \sim 3.4 \mu rad$ ($\theta_{min} \sim 120 \mu rad @$ SPS)

Geometrical scaling (GS), saturation and unitarity 1. On-shell (hadronic) reactions (s,t, Q^2=m^2);

 $t \leftrightarrow b$ transformation: $h(s,b) = \int_0^\infty d\sqrt{-t}\sqrt{-t}A(s,t)$ and dictionary:

П.Дегрола, Л.Л. енковский, Б.В. Струминский, ЯФ

P. Desgrolard, L.L. Jenkovszky and B.V. Struminsky,

R. Fiore, L.L. Jenkovszky, E.A. Kuraev, A.I. Lengyel, and Z.Z. Tarics, *Predictions for high-energy pp and Vbar pp scattering from a finite sum of gluon ladders,* Phys. Rev. D81, #5 (2010) 056005; arXiv0911.2094/hep-ph

where

$$f_i = \sum_{j=0}^i a_{ij} L^j \; ,$$

2)

Linear particle trajectories

Plot of spins of families of particles against their squared masses:

The slope of the cone for a single pole is: $B(s,t) \sim \alpha'(t) \ln s$. The Regge residue $e^{b\alpha(t)}$ with a logarithmic trajectory $\alpha(t) = \alpha(0) - \gamma \ln(1 - \beta t)$, is identical to a form factor (geometrical model).

The Pomeron trajectory

The Pomeron trajectory has threshold singularities, the lowest one being due to the twopion exchange, required by the t-channel unitarity. There is a constrain (Barut, Zwanziger; Gribov) from the t- channel unitarity, by which

$$\Im \alpha(t) \sim (t-t_0)^{\Re \alpha(t_0)+1/2}, \quad t \to t_0,$$

where t_0 is the lightest threshold. For the Pomeron trajectory it is $t_0 = 4m_{\pi}^2$, and near the threshold:

$$\alpha(t) \sim \sqrt{4m_{\pi}^2 - t}.$$
 (1)

Representative examples of the Pomeron trajectories: 1) Linear; 2) With a square-root threshold, required by t-channel unitarity and accounting for the small-t "break" as well as the possible "Orear", $e^{\sqrt{-t}}$ behavior in the second cone; and 3) A logarithmic one, anticipating possible "hard effects" at large $|t| |t| < 8 \text{ GeV}^2$.

$$\alpha_P \equiv \alpha_P(t) = 1 + \delta_P + \alpha_{1P}t, \qquad (TR.1)$$

$$\alpha_P \equiv \alpha_P(t) = 1 + \delta_P + \alpha_{1P}t - \alpha_{2P}\left(\sqrt{4\alpha_{3P}^2 - t} - 2\alpha_{3P}\right), \qquad (TR.2)$$

$$\alpha_P \equiv \alpha_P(t) = 1 + \delta_P - \alpha_{1P}\ln\left(1 - \alpha_{2P}t\right). \qquad (TR.3)$$

$$A_{pp}^{pp}(s,t) = P(s,t) \pm O(s,t) + f(s,t) \pm \omega(s,t) \rightarrow_{LHC} P(s,t) \pm O(s,t),$$

where P is the Pomeron contribution and O is that of the Odderon.

$$P(s,t) = i\frac{as}{bs_0}(r_1^2(s)e^{r_1^2(s)[\alpha_P(t)-1]} - \epsilon r_2^2(s)e^{r_2^2(s)[\alpha_P(t)-1]}),$$

where $r_1^2(s) = b + L - \frac{i\pi}{2}, \quad r_2^2(s) = L - \frac{i\pi}{2}$ with
 $L = \ln^{\frac{s}{2}} + \epsilon_{\frac{1}{2}}(t)$ is the Democrap trajectory and

 $L \equiv \ln \frac{s}{s_0}$; $\alpha_P(t)$ is the Pomeron trajectory and a, b, s_0 and ϵ are free parameters.

Does GS imply saturation? Not necessarily!

 $ImH(s,b) = |h(s,b)|^2 + G_{in}(s,b)$, (h is associated with the "opacity), Here from: $0 \le |h(s,b)|^2 \le$ $\Im h(s,b)) \le 1$. The Black Disc Limit (BDL) corresponds to $\Im h(s,b) = 1/2$, provided h(s,b) = $i(1 - \exp[i\omega(s,b)]/2$, with an imaginary eikonal $\omega(s,b) = i\Omega(s,b)$.

There is an alternative solution, that with the "minus" sign in $h(s,b) = [1 \pm \sqrt{1 - 4G_{in}(s,b)}]/2$, giving (S.Troshin and N.Tyurin (Protvino)): $h(s,b) = \Im u(s,b)/[1 - iu(s,b))]$,

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

TOTEM 2011-01 22 June 2011 CERN-PH-EP-2011-101 26 June 2011

Elastic pp Scattering at the LHC at $\sqrt{s} = 7$ TeV.

The TOTEM Collaboration

G. Antchev*, P. Aspell⁸, I. Atanassov^{8,*}, V. Avati⁸, J. Baechler⁸, V. Berardi^{5b,5a}, M. Berretti^{7b}, M. Bozzo^{6b,6a}, E. Brücken^{3a,3b}, A. Buzzo^{6a}, F. Cafagna^{5a}, M. Calicchio^{5b,5a}, M. G. Catanesi^{5a}, C. Covaul⁹, M. Csanád^{4†}, T. Csörgö⁴, M. Deile⁸, E. Dimovasili⁸, M. Doubek^{1b}, K. Eggert⁹,
V.Eremin[‡], F. Ferro^{6a}, A. Fiergolski[§], F. Garcia^{3a}, S. Giani⁸, V. Greco^{7b,8}, L. Grzanka^{8,¶}, J. Heino^{3a}, T. Hilden^{3a,3b}, M. Janda^{1b}, J. Kašpar^{1a,8}, J. Kopal^{1a,8}, V. Kundrát^{1a}, K. Kurvinen^{3a}, S. Lami^{7a}, G. Latino^{7b}, R. Lauhakangas^{3a}, T. Leszko[§] E. Lippmaa², M. Lokajíček^{1a}, M. Lo Vetere^{6b,6a},
F. Lucas Rodríguez⁸, M. Macrí^{6a}, L. Magaletti^{5b,5a}, G. Magazzù^{7a}, A. Mercadante^{5b,5a}, M. Meucci^{7b}, S. Minutoli^{6a}, F. Nemes^{4,†} H. Niewiadomski⁸, E. Noschis⁸, T. Novak^{4,||}, E. Oliveri^{7b}, F. Oljemark^{3a,3b}, R. Orava^{3a,3b}, M. Oriunno^{8**}, K. Österberg^{3a,3b}, A.-L. Perrot⁸, P. Palazzi⁸, E. Pedreschi^{7a}, J. Petäjäjärvi^{3a}, J. Procházka^{1a}, M. Quinto^{5a}, E. Radermacher⁸, E. Radicioni^{5a}, F. Ravotti⁸, E. Robutti^{6a}, L. Ropelewski⁸, G. Ruggiero⁸, H. Saarikko^{3a,3b}, A. Santroni^{6b,6a}, A. Scribano^{7b}, G. Sette^{6b,6a}, W. Snoeys⁸, F. Spinella^{7a}, J. Sziklai⁴, C. Taylor⁹, N. Turini^{7b}, V. Vacek^{1b}, J. Welti^{3a,b}, M. Vítek^{1b}, J. Whitmore¹⁰.

Phillips and Barger in 1973 [], right after its first observation at the ISR. Their formula reads

$$\frac{d\sigma}{dt} = |\sqrt{A}\exp(Bt/2) + \sqrt{C}\exp(Dt/2 + i\phi)|^2, \tag{1}$$

where A, B, C, D and ϕ are determined independently at each energy.

L.Jenkovszky, A. Lengyel, D. Lontkovskyi: The Pomeron and Odderon in elastic, inelastic and total cross-sections, hep-ph/056014.

P and f (second column) have positive C-parity, thus entering in the scattering amplitude with the same sign in pp and $\bar{p}p$ scattering, while the Odderon and ω (third column) have negative C-parity, thus entering pp and $\bar{p}p$ scattering with opposite signs, as shown below:

$$A(s,t)_{pp}^{\bar{p}p} = A_P(s,t) + A_f(s,t) \pm [A_{\omega}(s,t) + A_O(s,t)], \qquad (1)$$

where the symbols P, f, O, ω stand for the relevant Regge-pole amplitudes and the super(sub)script, evidently, indicate $\bar{p}p(pp)$ scattering with the relevant choice of the signs in the sum.

$$A_P(s,t) = \frac{d}{d\alpha_P} \left[e^{-i\pi\alpha_P/2} G(\alpha_P) \left(s/s_0 \right)^{\alpha_P} \right] =$$
(1)
$$e^{-i\pi\alpha_P(t)/2} \left(s/s_0 \right)^{\alpha_P(t)} \left[G'(\alpha_P) + \left(L - i\pi/2 \right) G(\alpha_P) \right].$$

The Pomeron is a dipole in the j-plane

$$A_P(s,t) = \frac{d}{d\alpha_P} \left[e^{-i\pi\alpha_P/2} G(\alpha_P) \left(s/s_0 \right)^{\alpha_P} \right] = \tag{1}$$

$$e^{-i\pi\alpha_P(t)/2} \left(s/s_0\right)^{\alpha_P(t)} \left[G'(\alpha_P) + \left(L - i\pi/2\right)G(\alpha_P)\right].$$

Since the first term in squared brackets determines the shape of the cone, one fixes

$$G'(\alpha_P) = -a_P e^{b_P[\alpha_P - 1]},\tag{2}$$

where $G(\alpha_P)$ is recovered by integration, and, as a consequence, the Pomeron amplitude can be rewritten in the following "geometrical" form

$$A_P(s,t) = i \frac{a_P \ s}{b_P \ s_0} [r_1^2(s)e^{r \ (s)[\alpha_P-1]} - \varepsilon_P r_2^2(s)e^{r \ (s)[\alpha_P-1]}], \tag{3}$$

where $r_1^2(s) = b_P + L - i\pi/2$, $r_2^2(s) = L - i\pi/2$, $L \equiv \ln(s/s_0)$.

Energy variation of the relative importance of the Pomeron with respect to contributions from the secondary trajectories and the Odderon:

$$R(s,t=0) = \frac{\Im m(A(s,t) - A_P(s,t))}{\Im A(s,t)},$$
(1)

where the total scattering amplitude A includes the Pomeron contribution A_P plus the contribution from the secondary Reggeons and the Odderon.

Starting from the Tevatron energy region, the relative contribution of the non-Pomeron terms to the total cross-section becomes smaller than the experimental uncertainty and hence at higher energies they may be completely neglected, irrespective of the model used.

$$R(s,t) = \frac{\left| \left(A(s,t) - A_P(s,t) \right)^2}{\left| A(s,t) \right|^2}.$$
(2)

Review papers:

А.Н. Валл, Л.Л. Енковский, Б.В. Струминский: *Взаимодействие адронов при высоких энергиях*, Физика элементарных частиц и атомного ядра (ЭЧАЯ) **т.19** (1988) стр. 181-223.

Л.Л. Енковский: Дифракция в адрон-адронных и лептонадронных процессах при высоких энергиях, ЭЧАЯ **т.34** (2003) стр. 1196-1255.

R. Fiore, L. Jenkovszky, R. Orava, E. Predazzi, A. Prokudin, O. Selyugin, *Forward Physics at the LHC; Elastic Scattering*, Int. J.Mod.Phys., **A24**: 2551-2559 (2009).

