

Tibor Keri for the PANDA collaboration at the Crimean Conference 2011

p-beam setup

Variable beam momenta : 1-15 GeV/c (~2.25 < \sqrt{s} /GeV < ~5.47) High resolution mode : dp/p ~10⁻⁵ @ L ~10³¹ cm⁻² s⁻¹ (electron cooling) High luminosity mode : L ~2*10³² cm⁻² s⁻¹ @ dp/p ~10⁻⁴ (stochastic cooling) p-beam duty cycle (10¹¹ p stored) : 2000 ns beam on / 400 ns beam off

collider setup available : SIS18 versus SIS100/SIS300

University of Glasgow

Detector requirements

4π acceptance

 \rightarrow partial wave analysis for exotics

High vertexing resolution

 \rightarrow charmonium decays

High tracking resolution

 \rightarrow event selection

Very good particle identification (γ,e,µ,π,K,p,...)/(redundant)

 \rightarrow event selection

Variable trigger at high rates

 \rightarrow low statistics reactions

Variable targets and modular system

 \rightarrow hypernuclei

=> Novel techniques in detector and readout design used

=> General purpose detector adjustable for future physics

PANDA detector overview

Targets (pellet, cluster jet, solid)

Other options : fiber targets (C,CH2,...)

Targets (pellet, cluster jet, solid)

=> Interaction rate : ~20 MHz at $2*10^{32}$ cm⁻² s⁻¹ Luminosity with 10^{11} p stored

Vertex detectors

Tracking detectors

Central tracker

Straw Tube Tracker / Time Projection Chamber

Tracking detectors Straw Tube Tracker

50cm

4636 pressure stabilized straw tubes +1 bar Gas mixture : Ar/CO2 (90/10) at 2 bar $X/X_0 \sim 1.2\%$ (2/3 tube wall + 1/3 gas)

 $σ_{r,φ} \le 150 \ \mu m$ $σ_z \le 1.0 \ mm$ $σ_n \le 1.2\% \ (B = 2 \ T)$

Material: 27 μm Mylar 2x30 nm Al Anode wire: 20 μm W/Re

90 cm

Tracking detectors Time Projection Chamber

Multi-GEM for gas amplification and ion backflow suppression Gas mixture (700 I) : Ne/CO2 (+CH4/CF4)

Two half cylinders R= 15.5 – 42.5 cm Max drift path : 1.5 m Max drift time : 50 – 70 µs Pads (2 mm x 2mm) : 100k PASA/Altro or AFTER T2K

 $\sigma_p \le 1\% (B = 2 T)$ Good PID (dE/dx)

Continuous sampling Pile-up due to high count rate Space charge build-up

Particle identification

Particle identification Barrel DIRC

Detection of Internally Reflected Cherenkov

Low/uniform material budget **Primary process**

96 fused silica bars (n=1.47) 17 x 33 x 2500 mm³ **MCP-Photon detection** 7-10k Channels 0.5-1 T magnetic field **Dispersion correction**

Particle identification Scintillating Tiles

Particle identification Disc DIRC

Electro-Magnetic Calorimeter

Improved PWO II (2 cm x 2 cm x 20 cm) Operation at -25° C ΔT ~0.1 K ~16k PWO crystals 57 cm inner radius 22 X thickness Readout VPT+Apfel ASIC, LAAPD+SADC Goal: 4π acceptance **EMC** Compact design

γ-detection few MeV to 10GeV $\sigma(E)/E \sim 1.5\%/\sqrt{E} + 0.3\%$

TDR : arXiv:0810.1216v1

Target Spectrometer

Solenid

- Super conducting
- 2 T field
- 1.8 m coil diameter
- 2.6 m coil length
- Θ angle coverage Inner detectors $10^{\circ} - 140^{\circ}$ horizontal $5^{\circ} - 140^{\circ}$ vertical EMC almost 4π

Instrumented Yoke Micro Drift Tubes µ-detection < 15 GeV

Dipole magnet

Dipole 2 Tm field integral 1.2 m opening width 0.6 m opening height

Forward tracker

2+2+2 planar tracker Each 2x16 straw tubes

Θ - angle coverage
Inner detectors
< 10° horizontal
< 5° vertical

Forward Spectrometer

RICH Improved HERMES RICH Shashlyk Calorimeter Forward TOF wall Fast scintillator like BC408 46 slabs 140x10x2.5 cm³ 20 slabs 140x 5x2.5 cm³ 50 ps time resolution 3σ for 2.8 – 4.7 GeV/c or Resistive Plate Chamber

Muon Range System

37 layers Mini Drift Tubes, ~4k MDT, ~30k wires, ~75k stripes

Shashlyk calorimeter

Module

380 Layers of 0.3 mm lead and 1.5 mm scintillator 680 mm total length 55 mm x 55 mm tranverse size 36 BCF-91A WLS fibers (Ø1mm) for light collection Photon detection via PMT 59 mm Moliere Radius 20 X_0 Total radiation length LED for gain monitoring

Calorimeter

7 m from IP Active Area : 3 m x 1.5 m 374 supermodules with each 4 modules $\sigma(E)/E = 5.6/E + 2.4/\sqrt{E} + 1.3 \%$ ([E]=GeV)

Luminosity monitor

Goal : Count normalisation

Concept : Low t elastic scattering

Design:

4 double sided planes of 8 silicon trapezoids at 11 m behind IP 10 cm plane distance each 22.5 deg plane rotation each 150/300 µm thick at 45 deg angle 3-8 mrad acceptance

Problem : Similar signal/background signature

- \rightarrow no central trigger as all sub-detectors needed Solution
- → continuous/selftriggered readout
- \rightarrow timestamping of data
 - ~ 15 ps to data concentrator
 - ~ 20 ps to frontend electronics
- \rightarrow information distribution system

DAQ (programmable physics machine)

Frontend electronics

Data concentrator

First stage Burst Event Builder

Second stage Burst Event Builder

Compute node on Computer farm

20 MHz interaction rate x 4-8KB event size = 200 GB/s raw data rate

Detector Control System

Local and Remote access

based on AFECS, EPICS and MonaLisa

Detector Control System

Grid system

Distributed computer farm

based on AliEn and MonaLisa

Simulation and Reconstruction

PANDA detector performance

Integrated luminosity at 2*10³² cm⁻² s⁻¹ for 50% efficiency ~8 pb⁻¹ / day ~3 fb⁻¹ / year

Reconstructed events per year $\sim 2 \times 10^9 \text{ J/W}$ $\sim 2 \times 10^7 \chi_2$ $\sim 2 \times 10^7 \text{ DD}$ $\sim 2 \times 10^8 \Xi\overline{\Xi}$

Fine scan to measure masses with $\Delta M \approx 50$ keV and $\Gamma \approx 10$ %

Summary

PANDA detector

General purpose detector High rates High precision Various targets

>=430 physicists from >=56 institutes in >=17 countries

-

★**

-

۲

Basel, Beijing, Bochum, Bombay, Bonn, Brescia, Bucharest, Catania, Chicago, Cracow, Darmstadt, Dresden, Dubna, Edinburgh, Erlangen, Evanston, Ferrara, Frankfurt, Frascati, Gatchina, Genova, Giessen, Glasgow, Groningen, Helsinki, Juelich, Katowice, Lanzhou, Lund, Mainz, Milano, Minsk, Moscow, Muenchen, Muenster, Mumbai, Novosibirsk, Orsay, Otwock-Swierk, Pavia, Protvino, Silesia, Stockholm, St. Petersburg, Torino, Trieste, Tuebingen, Uppsala, Valencia, Warsaw, Wien

