

Top quark pair cross-section measurement using CMS data at a 7 TeV centre-of-mass energy

jérémie lellouch on behalf of the CMS collaboration

CRIMEA2011 September 2011

Table of contents

- * Introduction: motivation for top quark studies
- LHC and the CMS detector
- ***** Production and decay of the top quark at the LHC
- Cross-section measurement strategy
- ***** Selected review of the CMS results
- * Combination of the CMS results and comparison with theory
- Conclusion and outlook

Motivation for top quark studies

- Discovered in 1995 (Tevatron) but properties not very well known
- A key to the secrets of the Standard Model and beyond
 - Maximum coupling to the Higgs field \rightarrow low Higgs mass preferred
 - Allows precision measurements of SM parameters: total and diferential crosssections, mass, charge, asymmetry, also V_{th} element of the CKM matrix,...
 - Good window to new physics

Also a good benchmark topology for a wide array of analysis ingredients: lepton identification, jet energy scale, b-jet identification,...

3

The CMS detector

36 pb⁻¹ recorded in 2010 2.3 fb⁻¹ already on tape in 2011 Machine and data acquisition system perform very well

Good lepton identification Hermetic calorimetry, fine lateral granularity Excellent all-silicon tracking → allows for improved jet and MET reconstruction ("particle-flow" algorithms) and efficient b-tagging

Production and decay at the LHC

Production and decay at the LHC

Produced in pairs via gluon fusion or quark annihilation
 Gluon fusion dominates at the LHC (7 TeV) while quark annihilation dominates at the Tevatron (~ 2 TeV)
 Kidonakis [PRD 82 (2010) 114030]: σ_{tt} (7 TeV) = 163 + 11 - 10 pb
 Production cross-section ~ 7pb at the Tevatron → the LHC is a top quark factory
 The top decays to Wb → decay channels defined by the W decay

Top Pair Decay Channels

Today: present a selection from all the exploited channels from 2010 (36 pb⁻¹) and 2011 (1 fb⁻¹)

Strategy for cross-section extraction

- Need to build a model to compare with data
- Signal shape is given by simulated samples (MADGRAPH)
- Background shapes
 - are given by simulated samples
 - can be extracted from data: multijet background, but also Z/W + jets
- Data-driven techniques rely on isolating "side-band" data enriched in background but depleted in signal; contamination from other backgrounds can be removed by using simulation
- Since we want to perform a cross-section measurement, perform a binned likelihood fit of the different background / signal shapes to data or do a counting experiment

The lepton + jets channel (1)

Main backgrounds: W+jets; QCD, estimated from data with loosely isolated leptons

The lepton + jets channel (2)

- Strategy: simultaneous kinematic fit of signal and background templates to data in the 3-jet and >= 4-jet sample
 - Simultaneous fit allows better shape constraint
 - Fit on MET in the 3-jet sample, M3 (mass of hadronically decaying top) in the >=4-jet sample – most discriminating variables

Combined e /µ result: perform simultaneous MET and M3 fits on both the electron and the muon channel; one parameter per channel for QCD since sources are different (semi-leptonic decays in e/µ, also pion-rich jets faking electrons in e)

σ_# = 173 + 36 - 32 (stat +syst) ± 7 (lumi) pb

Total systematic uncertainty ~ 20% Dominated by jet energy scale ~ 18%, factorisation scale ~ 7% Result with 36 pb⁻¹, analysis with 1 fb⁻¹ being reviewed

The lepton + jets channel (3)

- ◆ Use flavour information → b-tagging

 - Build discriminant from displaced charged tracks
- Choose working point with 55% b-tag efficiency and 1.5% mis-tag rate

- ◆ Main systematics: jet energy scale, Q²-scale, b-tagging efficiency → correlated parameters which can bring large variations to the yields in each bin
- Therefore include them in likelihood fit as nuisance parameters, in effect simultaneously measuring the signal and background contributions

The lepton + jets channel (4)

Final distributions

The di-lepton channel (1)

- ◆ Final state: 2 leptons, 2 b jets and missing transverse energy → need good jet energy scale, b-tagging and lepton ID, but clean signature, low QCD background
- Event selection
 - Di-lepton triggering
 - At least one pair of oppositely charged, isolated leptons with $p_T > 20$ GeV, η
 - < 2.4 (2.5) for muons (electrons), one or two jets with $p_{_T}$ > 30 GeV, η < 2.5
 - MET > 30 GeV (2 jets) or 50 GeV (1 jet) in the ee and μμ channels only
- Main background: Z/γ + jets, estimated from data by counting number of Z + jets events having 76 < M_µ < 106 GeV and comparing with this cut's efficiency in simulation

The di-lepton channel (2)

- Also use b-tagging to increase signal purity: working point chosen has ~80% efficiency and ~ 10% mis-tag rate
- Cross-section extraction: counting experiment

The µ/T channel (1)

- Final state: 2 leptons of which one is a hadronically decaying τ, 2 b jets and missing transverse energy → tricky due to the fact that hadronic τ resemble jets
- Event selection
 - Single-muon trigger
 - One isolated muon with $p_{T} > 20$ GeV; one tau with $p_{T} > 20$ GeV
 - → At least two jets with p_T > 20 GeV, one of which is b-tagged, and MET > 40 GeV

The µ/T channel (2)

Main background: jets faking τ; calculate probability w(η, p_τ) that a jet fakes a τ on data selected with high-p_τ jet trigger; don't consider the trigger-matched jet to avoid trigger bias, subtract real τ contribution with simulation

σ_# = 148.7 ± 23.6 (stat) ± 26 (syst) ± 8.9 (lumi) pb

Total systematic uncertainty ~ 17%

Dominated by fake tau background estimation ~ 13%, τ-ID ~ 7%, b-tagging ~ 5% 15

The all-hadronic decay channel (1)

Very challenging: the multijet background (from QCD interactions) dominates

- Step 1: event selection
 - 4 jets with $p_{T} > 60$ GeV, 1 jet with $p_{T} > 50$ GeV, 1 jet with $p_{T} > 40$ GeV
 - Keep events with more jets if p_τ > 30 GeV
 - → Require at least 2 b-tagged jets with N_{tracks} (secondary vertex) >= 3 and decay length significance $d_{B} > 2 \rightarrow 38\%$ efficiency with very low mis-tag rate (0.12%)

- Step 2: kinematic fit
 - Reconstruct two W bosons (m = 80.4 GeV) from the non-tagged jets
 - Two top quarks from the W and the tagged jets; assume m_{top} = m_{antitop}
 - Fit the combinations, keep events with P(χ²) > 1%

	Signal fraction
Step 1 w/o b-tag	2%
Step 1 + b-tag	17%
Step 2	32%

The all-hadronic decay channel (2)

Model QCD background from data

- Select events with >= 6 no b-tagged jets (signal fraction < 1%)</p>
- Reweigh to match kinematics of b-tagged sample (p_τ and η of jets)
- Perform kinematic fit on 0-tag sample, assuming all jets to be b-jets, and adjust weight
- The reweighed data events are used to estimate the shape of the QCD background
- Cross-check with simulated events

Cross-section extraction via maximum likelihood fit of signal and background shapes to data

σ_{tt} = 136 ± 20 (stat) ± 40 (syst) ± 8 (lumi) pb

Total systematic uncertainty ~ 29 % Dominated by b-tagging (16%) and jet energy scale (14%) 12% assigned to QCD modelling (from ±5% variation in shape of gamma distribution fit to predicted points)

Combined results and comparison with theory

- Combine measurements using the best linear unbiased estimator technique
 - Assume uncorrelated systematics within each channel

σ_{tt} = 154 ± 17 ± 6 (lumi) pb Total uncertainty ~ 12%

Conclusion and outlook

- The LHC and the CMS detector have been performing very well since physics data taking started
 - → 36 pb⁻¹ on tape in 2010, already > 2 fb⁻¹ in 2011
 - Expect 3-5 fb⁻¹ by end 2011
- Top cross-section measurements have been done in various channels
 - Good agreement with theory
 - Most analyses already out with > 1 fb⁻¹
 - Other analyses released with 36 pb⁻¹ but pushing to update
- ◆ Top pair topology is an excellent benchmark for testing many analysis ingredients: reconstruction algorithms (particle-flow), lepton ID, b-tagging, data-driven background prediction techniques,.. → excellent understanding of detector
- CMS measurements now systematics-limited
 - CMS working hard to decrease dominant systematics: jet energy scale / MET, b-tagging, tau-ID,...
- CMS data already starting to constrain NLO calculations
 Differential measurements to come along with greater precision

Back-up

The BLUE method

- See L. Lyons, D. Gibaut; NIMA A270 1998 110-117 for details
- The Best Linear Unbiased Estimate method is a statistical technique used to combine several measurements of the same quantities obtained from eg. different channels
- Let's say we want to combine n measurements...
- ◆ Generate pseudo-experiments, using simulation, for each of those measurements, then perform measurement (e.g. likelihood fit) on each of them \rightarrow n measures
- Check each measures for biases \rightarrow check e.g. pull distributions for the n fit results
- If OK, we need to weight out n different results α_p will be the total contribution or result p. To find out the weights, calculate a variance (shown here for n = 3):

$$\sigma_{combined}^{2} = \begin{pmatrix} \alpha_{1} & \alpha_{2} & \alpha_{3} \end{pmatrix} \begin{pmatrix} \sigma_{1}^{2} & \sigma_{12} & \sigma_{13} \\ \sigma_{12} & \sigma_{2}^{2} & \sigma_{23} \\ \sigma_{13} & \sigma_{23} & \sigma_{3}^{2} \end{pmatrix} \begin{pmatrix} \alpha_{1} \\ \alpha_{2} \\ \alpha_{3} \end{pmatrix}$$

• Compute the α factors by minimising the variance using the contrain $\Sigma \alpha_i = 1$

For more details see also CDF and DØ papers on eg. top mass measurements or single-top evidence and discovery, where this technique was used