

Searches for Higgs and BSM physics with ATLAS

Nicole Ruckstuhl, Nikhef (Amsterdam) On behalf of the ATLAS Collaboration

Content

With more than 2.5 fb⁻¹ of integrated luminosity collected by ATLAS, searches for new particles are on-going.

- 1. Standard Model Higgs-boson
 - ► H→WW→lvlv
 - H→ZZ→IIvv
 - Combined results
- 2. Beyond the SM physics:
 - R-parity conserving SUSY
 - W'
 - Prompt equal-charge muon pairs
 - Top-anti-top resonances

https://twiki.cern.ch/twiki/bin/view/AtlasPublic

Standard Model Higgs-boson

Higgs production at the LHC:

- Gluon-gluon fusion
- Vector boson fusion
- Associated production: WH, ZH, ttH

Signal (I = e, µ)	Mass range (GeV)
$H \rightarrow \gamma \gamma$	110-150
$WH \rightarrow l \upsilon bb$	110-130
$ZH \rightarrow IIbb$	110-130
H → WW→lບlບ	110-300
$H \rightarrow WW \rightarrow I \cup qq$	240-600
$H \rightarrow ZZ \rightarrow 4I$	110-600
H → ZZ →IIບບ	200-600
$H \rightarrow ZZ \rightarrow IIqq/IIbb$	200-600

All cross section limits presented are CLs based limits determined using the profile likelihood method.

$H \rightarrow WW \rightarrow lv lv$ (l=e, μ)

ATLAS-CONF-2011-134

Cut & Count method in 2 jet channels (0/1 jets (not b-tagged))

Base selection (not a full list):

- 2 leptons (veto Z-resonance) p_T>25 GeV, p_T>20(15) GeV
- E_T^{miss} relative to nearest jet/lepton > 40(25) GeV
- exploit spin correlation in signal

 $m_{||} < 50 (65) \text{ GeV}$ $\Delta \phi_{||} < 1.3 (1.8)$

• Higgs mass dependent cut on transverse mass

The exact cuts depend on the lepton and jet channel and the considered Higgs mass

Background normalized using control regions In 0 jet channel dominated by WW In 1 jet channel dominated by WW and tt

ATLAS-CONF-2011-134

$H \rightarrow WW \rightarrow lv lv$ (l=e, μ)

For each Higgs-mass the 95% CL limit for the cross-section is calculated and compared with the SM cross-section and the expected limits.

With this data we can exclude the mass range 154 < m_H < 186 GeV at 95% CL

No significant evidence for a SM Higgs-boson is found with the largest discrepancy being less than 2σ

$H \rightarrow ZZ \rightarrow llvv$ (l=e, μ)

Limits set based on the transverse mass distribution

Base selection:

- lepton pairs consistent with Z decay
- E_T^{miss} (66/82 GeV)

Backgrounds:

• Top & W (estimated/verified from data)

5Ē

200

mass range 350 to 460 GeV excluded at 95% CL

- Di-boson (taken from theory)
- Z (from MC: relying on correct systematics for E_T^{miss} tails)

300

400

500

600

700

m_T [GeV]

Results:

Combined limits

Excluded at 95% CL: $I46 < m_H(GeV) < 232$ $256 < m_H(GeV) < 282$ $296 < m_H(GeV) < 466$

An excess of at most 2σ is found

Beyond the Standard Model

Many BSM models have been studied

- Supersymmetry
 No Higgs
- Extra-Dimensions
- Technicolor(s)
- Little Higgs

- ➢ GUT
- Hidden Valleys
 - > Leptoquarks

- Compositeness
- ➤ 4th generation (t', b')
- Heavy neutrino

▶

General approach of BSM searches:

- Impossible to test all models separately and for full phase space.
- Analyses are aimed at specific signatures.
- Focus on several agreed representative benchmark models.
- Model independent cross-sections limits are computed.
- These limits are translated to model dependent results.

I will only discuss a few of these analyses:

- R-parity conserving SUSY
- W'
- Prompt like-sign muon pairs
- tt resonances

R-parity conserving SUSY

General properties:

- Lightest SUSY particle stable
- LSP often neutralino or gravitino
- SUSY particles created in pairs
- Cross-section dominated by squark and gluino production
- Minimum decays:

$$\tilde{q} \to q \tilde{\chi}_1^0 \quad \tilde{g} \to q q \tilde{\chi}_1^0$$

- Decay chains with charginos or sleptons
- Long decay chains
- Relatively light sbottoms, stops and staus (due to stronger mixing in third family)

In gauge mediated SUSY:

- LSP is the gravitino, NLSP is often bino
- Primary decay: $ilde{\chi}^0_1 o \gamma ilde{G}$

At least 2, 3 or 4 jets for $\tilde{q}\tilde{q}$, $\tilde{q}\tilde{g}$ and $\tilde{g}\tilde{g}$

- Leptons (searches with 0/1/2 leptons)
- High jet / lepton multiplicity
- Enhanced b-quark and tau production

Two photons in the final state

SUSY channel: jets, E_T^{miss} and 0 leptons

Signal Region

Leading jet $p_{\rm T}$

Second jet $p_{\rm T}$

Third jet $p_{\rm T}$

 $E_{\mathrm{T}}^{\mathrm{miss}}$

 ≥ 2 jets ≥ 3 jets

> 130

> 130

> 40

> 40

> 130

> 130

> 40

 \geq 4 jets

> 130

> 130

> 40

> 40

> 40

> 0.4

> 0.25

2000

2500

3000

m_{eff} [GeV]

High mass

> 130

> 130

> 80

> 80

> 80

> 0.4

> 0.2

> 1100

five signal regions: optimised for $\tilde{q}\tilde{q}$, $\tilde{q}\tilde{q}$ and $\tilde{q}\tilde{q}$

Background estimated in each channel with a combined likelihood fit on the signal region and five control regions.

SUSY channel: jets, E_T^{miss} and 0 leptons

Process	Signal Region						
1100035	> 2_iet	> 3_iet	≥ 4-jet,	≥ 4-jet,	High mass		
	≥ 2-j01	≥ 5-jet	$m_{\rm eff} > 500 { m GeV}$	$m_{\rm eff} > 1000~{ m GeV}$	ingn mass		
Z/γ +jets	$32.5 \pm 2.6 \pm 6.8$	$25.8 \pm 2.6 \pm 4.9$	$208\pm9\pm37$	$16.2 \pm 2.1 \pm 3.6$	$3.3 \pm 1.0 \pm 1.3$		
W+jets	$26.2 \pm 3.9 \pm 6.7$	$22.7\pm3.5\pm5.8$	$367\pm30\pm126$	$12.7 \pm 2.1 \pm 4.7$	$2.2\pm0.9\pm1.2$		
$t\bar{t}$ + Single Top	$3.4\pm1.5\pm1.6$	$5.6\pm2.0\pm2.2$	$375\pm37\pm74$	$3.7\pm1.2\pm2.0$	$5.6\pm1.7\pm2.1$		
QCD jets	$0.22 \pm 0.06 \pm 0.24$	$0.92 \pm 0.12 \pm 0.46$	$34 \pm 2 \pm 29$	$0.74 \pm 0.14 \pm 0.51$	$2.10 \pm 0.37 \pm 0.83$		
Total	$62.3 \pm 4.3 \pm 9.2$	$55\pm3.8\pm7.3$	$984 \pm 39 \pm 145$	$33.4\pm2.9\pm6.3$	$13.2\pm1.9\pm2.6$		
Data	58	59	1118	40	18		

The five signal regions exclude non-SM cross section within acceptance of 24, 30, 477, 32 and 17 fb at 95% confidence.

New model dependent limits on gluino and squark masses:

- 1. MSUGRA (tan β =10, A₀=0, μ >0): Limit for m_{1/2} extended to >450 GeV at low m₀ Low m_{1/2} excluded within allowed m₀ range
- 2. Squark-gluino-neutralino model (M_{LSP}=0, only gluinos and squarks) Mass limits on squarks and gluinos up to 1 TeV

New

SUSY channel: jets, E_T^{miss} and 1 lepton

Base selection:

- I lepton (electron or muon)
- \geq 3 or \geq 4 jets
- High E_T^{miss}
- High transverse mass (lepton and E_T^{miss})
- High $m_{eff}: E_T^{miss} + p_T$ of jets + p_T of lepton

Result:

Due to small branching ratio, limits are less strong than those obtained in the 0 jet channel

Other SUSY searches and conclusion

- Other SUSY analyses in ATLAS include searches with:
 - At least I b-jet
 - More than 6 jets
 - At least 2 photons (gauge mediated SUSY)
- No significant excess has been found in any channel
- Most of the "easy" phase-space has been excluded
 - Limits will increase with more luminosity
 - Upgrade of the LHC to 14 TeV will also result in a "jump" of the obtained limits
- Effort now mostly focused on the more "difficult" phase-space
 - Small mass-differences leading to soft particles
 - Light stops, but heavy gluino's and other squarks
 - Etc.....

Excellent correspondence between measured transverse mass and SM expectation, also in the muon channel.

Exclusion at 95% confidence level:W' with Sequential Standard Model couplings with m_W < 2.15 TeV. The Z' limit is 1.83 TeV (see talk by A.Ventura)

ATLAS-CONF-2011-126

New

Prompt defined as produced at the interaction point. SM signal dominated by: WZ, ZZ, $W^{\pm}W^{\pm}$, ttW, all with relatively small cross-section

Non-SM signal:

- Supersymmetry
- Universal extra dimensions
- Heavy Majorana neutrinos
- Fourth-family quarks
- Doubly charged Higgs
- Etc.

Non-prompt muons rejected by strong quality requirement on muons:

- charge _{Muon Spectrometer} = charge _{Inner Detector}
- d0-significance < 3
- Strong isolation requirements

ATLAS-CONF-2011-126 & ATLAS-CONF-2011-127

Prompt like-sign muon pairs: H⁺⁺/H⁻⁻ New

<u>Result:</u>

No excess has been found for any invariant mass bin. Limits on the cross-section for each bin are listed in the table below.

Model dependent limit: Double charged Higgs:

Upper limit of 13-1.6 fb for cross-section times branching ratio to two muons for Higgs masses between 100 and 400 GeV.

tt resonances

Heavy particles coupling to the top quark can lead to resonances in the $t\bar{t}$ invariant mass spectrum.

This signal is sensitive to (for example):

- Kaluza-Klein gluons in Randall-Sundrum model (extra dimension)
- Leptophobic Z'

These results are from an analysis aimed at $t\bar{t}$ decays with two W's decaying leptonically Analysis in the I lepton channel also found no evidence for non-SM signal: ATLAS-CONF-2011-087

Conclusion and outlook

- Standard model Higgs-boson searches have excluded much of the available mass range:
 - I46 < m_H(GeV) < 232</p>
 - 256 < m_H(GeV) < 282</p>
 - 296 < m_H(GeV) < 466</p>
- No Higgs signal has been found yet (Maximum 2 σ)
- Next few months will be very exciting as we reach more of the available mass range.
- No evidence for beyond the Standard Model physics has been found so far.
- Searches are on-going and new limits on many models are set. A summary of these limits is included in the back-up slides.
- More models and phase-space will become accessible in the coming year.
- Many BSM searches will benefit from an increase to higher collision energy.
- Results listed at: https://twiki.cern.ch/twiki/bin/view/AtlasPublic

Backup

Summary of BSM searches in ATLAS

ATLAS Searches* - 95% CL Lower Limits (Lepton-Photon 2011)

*Only a selection of the available results leading to mass limits shown

Mass scale [TeV]

Nicole Ruckstuhl (Nikhef) Crimeal I

Н→үү

Fit on the $m_{\gamma\gamma}$ spectrum: signal function on an exponential background

Results:

Data agree well with background expectation, with no evidence for a signal.

Observed upper limit: (1.7 to 5) x $\sigma_{SM,Higgs}$

Small branching fraction compensated by excellent mass resolution.

Promising for the future

Both converted and unconverted photons are considered Background: $\gamma\gamma$, γ -jet & multi-jet contributions

WH→lvbb, ZH→llbb

Limits set based on the invariant mass distribution of the two b-jets

Base selection:

- 2 leptons (ZH) or I lepton + E_T^{miss} (WH)
- 2 b-tagged jets

W, Z, top normalisation constrained from m_{bb} sidebands

Limits set based on the 4-lepton invariant mass distribution

$H \rightarrow WW \rightarrow lvqq$ (l=e, μ) (q=u,d,s,c)

Limits set based on fit of the invariant mass distribution: m_{loji} (using $m_{lo} = m_w$)

Nicole Ruckstuhl (Nikhef) Crimeal I

$H \rightarrow ZZ \rightarrow llqq/llbb$ (l=e,µ) (q=u,d,s,c)

Limits set based on the invariant mass distribution of the 2-lepton+2-jets system

Base selection:

L dt=1.04 fb

800 900

[GeV]

[GeV]

m_{ilij}

m_{IIII}

L dt=1.04 fb

Signal (m_H=400 GeV) Total BG

Dibosor

100 200 300 400 500 600 700 800 900

data

Signal × 10

Diboson

(m_H=400 GeV) Total BG

- lepton pairs consistent with Z decay
- jet pair consistent with Z decay

Separate search for b-tagged and untagged jets

Nicole Ruckstuhl (Nikhef) Crimeal I

140<u></u>

120

100

80

60

40

20F

3.5

З

2.5

2

1.5

0.5

0^t

ATLAS Preliminary

ATLAS Preliminary

100 200 300 400 500 600 700

Events / 25 GeV

Events / 25 GeV

<u>Result</u>: No excess found, model independent limits on non-SM cross section within acceptance of 288, 61, 78, and 17 fb at 95% confidence.

SUSY channel: di-photons and E_T^{miss}

Base selection:	$E_{\rm T}^{\rm miss}$ range	Data	Predicted background events			
• 2 photons	[GeV]	events	Total	QCD	$W/t\bar{t}(\rightarrow e\nu) + X$	Irreducible
• F- ^{miss} > 125 GeV	0 - 20	20881	-	-	-	-
-1	20 - 50	6304	5968 ± 29	5951 ± 28	13.3 ± 8.1	3.6 ± 0.3
	50 - 75	86	87.1 ± 3.3	60.9 ± 2.8	25.2 ± 1.7	1.0 ± 0.2
Irreducible background	75 - 100	11	14.7 ± 1.2	6.7 ± 0.9	7.4 ± 0.8	0.52 ± 0.10
• $Z(\rightarrow \nu \bar{\nu}) + \gamma \gamma$	100 - 125	6	4.9 ± 0.7	1.6 ± 0.4	3.0 ± 0.5	0.23 ± 0.05
• $W(\rightarrow \ell \nu) + \gamma \gamma$	> 125	5	4.1 ± 0.6	0.8 ± 0.3	3.1 ± 0.5	0.15 ± 0.01

Result:

Less than 7.1 non-SM events in signal region (including background and selection uncertainties)

In the case of gauge mediate SUSY with:

- Bino-like neutralino
- All SUSY particles have mass ~1.5 TeV except for:
 - gluino,
 - lightest neutralino
 - gravitino

Gluino mass < 800 GeV excluded for neutralino mass > 100 GeV

