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A new symmetry usually allows to construct more transparent formulation
of the theory.

Recent examples are given by gauge theories. QED may be formulated
in the Coulomb gauge, however much more transparent formulation
is presented by the quantization in a manifestly covariant gauge,
which is possible due to the gauge invariance of the theory. Yang-Mills
theory became really popular only after its formulation in the Lorentz
covariant terms and explicit proof of its renormalizability which was
possible because of the gauge invariance. The gauge invariance of
the Higgs model allows to give a manifestly renormalizable theory
describing a massive gauge theory.

In this talk I wish to make a propaganda for a new class of symmetries,
which were introduced in my paper rather long ago (A.A.S., 1991),
but recently were applied successfully to the nonperturbative quantization
of non-Abelian gauge theories.



Equivalence theorems: canonical transformations,
point transformations ϕ = ϕ′+ f(ϕ′)

More general transformations:

ϕ =
∂nϕ′

∂tn
+ f(

∂n−1ϕ′

∂tn−1
, . . .

∂ϕ′

∂t
) = f̃(ϕ′) (1)

The spectrum is changed. What about the unitarity?



Path integral representation for the scattering matrix

S =
∫

exp{i
∫
L(ϕ)dx}dµ(ϕ); limt→±∞ϕ(x) = ϕout,in(x) (2)

If the change (1) does not change the asymptotic conditions, then the
only effect of such transformation is the appearance of a nontrivial
jacobian

L(ϕ)→ L̃(ϕ′) = L[ϕ(ϕ′)] + c̄a
δϕa

δϕ′b
cb (3)

For all new excitations one should take the vacuum boundary conditions.
Unitarity?



The new Lagrangian is invariant with respect to
the supertransformations

δϕ′a = caε

δca = 0; δc̄a =
δL

δϕa
(ϕ′)ε (4)

On mass shell these transformations are nilpotent and generate a
conserved charge Q. In this case there exists an invariant subspace of
states annihilated by Q, which has a semidefinite norm. (A.A.S.,1991).
For asymptotic space this condition reduces to

Q0|φ >as= 0 (5)

The scattering matrix is unitary in the subspace which contains only
excitations of the original theory. However the theories described by
the L and the L̃ are different, and only expectation values of the
gauge invariant operators coincide. In gauge theories the transition
from one gauge to another may be considered as such a change.



A very nontrivial generalization is obtained if one transforms the L̃

further shifting the fields ϕ′ by constants. It is not an allowed change
of variables in the path integral as it changes the asymptotic of the
fields. The unitarity of the "shifted"theory is not guaranteed and a
special proof (if possible) is needed.

Using this method one can construct a renormalizable formulation of
nonabelian gauge theories free of the Gribov ambiguity.
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A problem of unambiguos quantization of nonabelian gauge
theories beyond perturbation theory remains unsolved. Even in
classical theory the equation

DµFµν = 0 (6)

does not determine the Cauchi problem. Gauge invariance results
in existence of many solutions of this equation. To define the
classical Cauchi problem and subsequently to quantize the model
one imposes a gauge condition, e.g. Coulomb gauge ∂iAi = 0.



Differential gauge conditions: L(Aµ, ϕ) = 0→ Gribov ambiguity.

Algebraic gauge conditions: L̃(Aµ, ϕ) = 0 → absence of the manifest
Lorentz invariance and other problems.



Coulomb gauge

∂iAi = 0

A′i = (AΩ)i

4αa + igεabc∂i(A
b
iα
c) = 0 (7)

This equation has nontrivial solutions decreasing at spatial infinity→Gribov
ambiguity.

In perturbation theory the only solution is α = 0.



Weinberg-Salam model

L = −1/4F aµνF
a
µν − 1/4GaµνG

a
µν + iL̄γµ(∂µ +

ig

2
τaAaµ +

ig1

2
Bµ)L

+iR̄γµ(∂µ + ig1Bµ)R+ |∂µϕ+
ig

2
τaAaµϕ+

ig1

2
Bµϕ|2 −

−G{(L̄ϕ)R+ R̄(ϕ∗L)}+
m2

2
(ϕ∗ϕ)− λ2(ϕ∗ϕ)2 (8)

where

ϕ(x) = (ϕ1(x), ϕ2(x)) =
√

2−1(iB1 +B2, σ − iB3 +
√

2µ) (9)

In perturbation theory all predictions fit the experiment very well.



However there are certain questions to be answered

1. Where is the Higgs meson? (LHC).

2. Is the model valid beyond perturbation theory?

3. Is it possible to derive the Weinberg-Salam model from some grand-
unified model?

4. Quantization of the Weinberg-Salam model beyond the perturbation
theory?



SU(2) Higgs-Kibble model

.

L = −1/4F aµνF
a
µν + (Dµϕ)∗(Dµϕ)− λ2(ϕ∗ϕ− µ2)2 (10)

Gauge transformations:

δAaµ = ∂µη
a + gεabcAbµη

c,

δBa = µ
√

2ηa +
g

2
εabcBbηc +

g

2
σηa. (11)

Unitary gauge Ba = 0 The spectrum: Three components of the
massive vector field Aai .

One scalar field (Higgs meson) σ.

Unitarity is obvious, but there is no renormalizability.



Renormalizable gauges: ∂µAaµ = 0.

The spectrum:

Aai , σ, unphysical components of Aaµ, Faddeev-Popov ghosts c̄a, ca,
Goldstone bosons Ba.

The unitarity in the physical subspace should be proven!

Nonuniqueness of the gauge fixing does not allow to do that beyond
perturbation theory.



An alternative formulation of the Higgs-Kibble model.

L = −
1

4
F aµνF

a
µν + (Dµϕ

+)∗(Dµϕ−) + (Dµϕ
−)∗(Dµϕ+)

+(Dµϕ)∗(Dµϕ)− λ2(ϕ∗ϕ− µ2)2

−[(Dµb)
∗(Dµe) + (Dµe)

∗(Dµb)] (12)

Here the field ϕ is the complex doublet describing the Higgs meson,
and the fields ϕ± are new auxiliary fields. The fields b, e have a similar
structure, but correspond to the anticommuting fields. The shift

ϕ−(x)→ ϕ−(x)− m̂; ϕ(x)→ ϕ(x)− µ̂ (13)

where m̂ and µ̂ are the coordinate-independent condensates

m̂ = (0,m/g); µ̂ = (0, µ/g) (14)

generates the mass term for the vector field.



The new Lagrangian describing the massive vector field is

L = −
1

4
F aµνF

a
µν + (Dµϕ

+)∗(Dµϕ−) + (Dµϕ
−)∗(Dµϕ+)

−[(Dµϕ
+)∗(Dµm̂) + (Dµm̂)∗Dµϕ+]

−[(Dµb)
∗(Dµe) + (Dµe)

∗(Dµb)] + (Dµϕ)∗(Dµϕ)

−[(Dµϕ)∗(Dµµ̂) + (Dµµ̂)∗(Dµϕ)]

+(Dµµ̂)∗(Dµµ̂)− λ2[(ϕ− µ̂)∗(ϕ− µ̂)− µ2]2 . (15)

After the shift both the fields ϕ and ϕ− become the gauge fields:

δϕa− = mηa +
g

2
εabcϕb−η

c +
g

2
ϕ0
−η

a

δϕa = µηa +
g

2
εabcϕbηc +

g

2
ϕ0ηa (16)

A gauge condition may be imposed on the fields Aaµ, ϕa, ϕa−.



We choose the gauge ϕa− = 0

This is an algebraic gauge, which is manifestly Lorentz invariant and,
as we shall see, renormalizable.

An ambiguity?

ϕa− = 0; (ϕΩ
−)a = 0; (ϕΩ

−)a = ϕa−+ (m+
g

2
ϕ0
−)ηa (17)

For large ϕ0
− there is an ambiguity

This ambiguity may be eliminated by a simple change of variables in
the classical Lagrangian



ϕ0
− =

2m

g
(exp{

gh

2m
} − 1); ϕa− = M̃ϕ̃a−

ϕa+ = M̃−1ϕ̃a+; ϕ0
+ = M̃−1ϕ̃0

+

e = M̃−1ẽ; b = M̃b̃ (18)

where

M̃ = 1 +
g

2m
ϕ0
− = exp{

gh

2m
} (19)

At the surface ϕa− = 0, the equation (ϕ̃Ω
−)a = 0, implies ηa = 0.

No ambiguity!



The divergency index of a diagram with LΦ external lines of the field
Φ:

n = 4− 2Lϕ0
+
− 2Lϕa+

− LA − Le − Lb − Lh − LB − Lσ (20)

All the diagrams with more than four external lines are convergent.

The model is explicitly renormalizable!



Unitarity.

The model includes many unphysical (ghost) fields:ϕα+, (α = 0,1,2,3, ), h,
ϕa(Ba)(a = 1,2,3), eα, bα, Aa0. The unitarity in the physical subspace,
including only Aai , σ should be proven.

The Lagrangian L was invariant with respect to the supersymmetry
transformaions:

δϕa− = −ba

δϕ0
− = −b0

δea = ϕa+
δe0 = ϕ0

+
δb = 0

δϕα+ = 0

α = 0,1,2,3. (21)



This invariance induces the corresponding symmetry transformations
of the variables ϕ̃α+, h, ẽ, b̃,which leave invariant the Lagrangian L̃.

The asymptotic theory is invariant with respect to the supersymmetry
transformations

δϕ̃a− = 0; δAaµ = m−1∂µb̃
a; δh = −b̃0; δϕa = 0. (22)

This invariance provides the conservation of the charge Q, and unitarity
of the scattering matrix in the subspace of the states annihilated by
Q0: Q0|ψ >as= 0

Together with the gauge invariance it guarantees the unitarity of the
S-matrix in the space including only physical states Aai , σ.



Conclusion

1.A unique covariant quantization of the Higgs-Kibble (Weinberg-
Salam) model beyond the perturbation theory is possible.

The model is renormalizable in the ambiguity free Lorentz invariant
gauge.

The necessary counterterms preserve the symmetries, which provide
the unitarity of the renormalized theory and preserve the gauge invariance.
However a redefinition of the parameters and the fields is needed.

The crucial role for all this consruction must be played by the nonperturbative
calculations.


