

Search for $\mu \rightarrow e\gamma$ decay MEG latest result

4/September/2011

Crimean conference @ Alushta NEW TRENDS IN HIGH-ENERGY PHYSICS

ICEPP, the University of Tokyo

Yusuke UCHIYAMA

(for MEG collaboration)

$\mu \rightarrow e\gamma \ search$

- Lepton-flavor violation (LFV) in charged lepton sector has not been observed.
 - Forbidden in SM (<O(10⁻⁵⁰) with finite v mass),
 - But new physics predict observable rate
 - Ex) SUSY-seesaw, SUSY-GUT, etc.
 ℬ(μ→eγ)~10⁻¹⁵-10⁻¹¹

• Existing experimental upper limit

- $\mathscr{B}(\mu \rightarrow e\gamma) < 1.2 \times 10^{-11}(1999, \text{MEGA@LAMPF})$
- A $\mu \rightarrow e\gamma$ signal is a <u>clear evidence</u> for new physics
 - No SM background, no hadronic uncertainty.
- MEG aims at searching down to $O(10^{-13})$

Dominant

The MEG Experiment

- World's most intense **DC muon beam** @ PSI
- High-rate tolerable e⁺ spectrometer with gradient B-field
- High performance γ-ray detector with Liquid Xenon

MEG History

				First result (2008 data)
1999		Proposal		(Nucl.Phys.B834 1)
		··· R&D ···		Sensitivity : 1.3×10 ⁻¹¹ 90% UL : 2.8×10 ⁻¹¹
2007		Engineering run		
2008	Sep – Dec	1 st physics data ad	cquisition	Preliminary result of 2009
2009		Analysis of 2008 of	lata	(presented in conferences) Sensitivity : 6.1×10⁻¹²
		Hardware upgrade	е	90% UL : 1.5×10 ⁻¹¹
	Nov – Dec	2 nd physics data a	cquisition	
2010		Analysis of 2009 of	lata	
	Aug – Oct	3 rd physics data acquisition		
2011		Analysis of 2009&	2010 data	
now	July – Nov	4 th physics data acquisition		
			Final ro (arXiv	esult of 2009 & 2010 11075547, accepted PRL) This talk

Crimean Conf, 4/Sep/2011

What's new

- New data
 - 2010 data = 2 × 2009 data
 - Combine 2009 & 2010
- Better understand of detector
 - Alignments inside/among detectors
 - Implement correlations among variables
 - $_{-} \rightarrow$ Reduction of systematic uncertainties
- Analysis methods
 - N_{BG} constrained from sideband data
 - Profile-likelihood interval with Feldman-Cousins method

Switzerland

PSI 1.2MW proton ring- cyclotron

MEGA used pulsed beam 6% duty cycle Instant intensity 2.6x10⁸ average 1.3x10⁷

MEG Duty cycle 100%

instant=ave $3 \times 10^7 \mu^+/s$

Provides world's most intense DC muon beam

(surface muon)

590 MeV

2.2mA

Crimean Conf, 4/Sep/2011

Liquid xenon y-ray detector

Active volume ~800/

 $\Omega/4\pi = 11\%$

50cm

846 PMTs

- 900 liter liquid xenon
 - Scintillation medium
 - High light yield (75% of NaI(Tl))
 - Fast response (τ_{decay} =45ns)
 - High stopping power ($X_0=2.8$ cm)
 - No self-absorption
 - Uniform, no-aging
 - Challenges
 - Vacuum ultra-violet (178nm)
 - Low temperature (165K)
 - Need high purity
 - No segmentation
 - Measure energy, position, time at once
 - $-\sigma_{\rm E}/{\rm E} < 2\%$ (@52.8MeV)
 - $-\sigma_t = 67 \text{ psec}$
 - $-\sigma_{x} = 5-6 \text{ mm}$

The first ton-scale LXe detector in use

Crimean Conf, 4/Sep/2011

Various kinds of calibration verify the performance

Crimean Conf, 4/Sep/20 Energy scale uncertainty ~ 0.3%

<u>e⁺ spectrometer</u>

Drift chamber

- Stopping Target Helium atmosphere Magnet coil
- 16 modules
 - Aligned concentrically (10.5°)
 - 2 layers per 1 module
- 12.5 μm thick cathode foil with vernier pattern
- He:ethane = 50:50
- Ultra low mass chamber
 - Multiple scatter limits the performance
 - To suppress γ BG source
 - In total, along e⁺ trajectory $\sim 2.0 \times 10^{-3} X_0$
- Tracking with Kalman filter
 - Reconstruct e⁺ momentum vector on target
 - $\sigma_{\rm E}/{\rm E} = 0.6 \%$
 - $\sigma_{\theta} \sim 10 \text{ mrad}$
 - $\sigma_{\phi} \sim 7 \text{ mrad}$

Crimean Conf, 4/Sep/2011

Time measurement

measure all detector contribution at once, in situ monitoring, stable <20ps

Crimean Conf, 4/Sep/2011

e⁺ time measured by a set of timing counter

- Two layers of plastic scintillator
- Reconstruct muon decay time
 - TC hit time $+ e^+$ flight length from DC
 - LXe hit time + γ flight length (line)

-
$$t_{e\gamma} = t_{e+} - t_{\gamma}$$

Total resolution : $\sigma_{tev} = 122 \text{ psec}$

To be confident in angle measurement

- Calibration of angle measurement is the most difficult.
 - No back-to-back source

- Improved alignment inside/among detectors
 - DC B-field target LXe
- Understand the detail of correlations in e⁺ measurement

Analysis

- Blind analysis
 - Hidden parameters: (E_y, t_{ey})
 - Any study (calibration, BG estimation, performance evaluation) can be done with events outside the box
- Sideband

- Accidental BG can be studied with off-time sideband
- Radiative muon decay(RMD) can be studied with low-energy E_{γ} sideband
- Normalization
 - Count unbiased Michel sample mixed in physics data
 - Count RMD sample in E_y sideband
- Wide analysis region for likelihood fitting
 - Estimate Sig & BG simultaneously.
 - PDFs mostly from data

Crimean Conf, 4/Sep/2011

Likelihood fit

Extended unbinned maximum likelihood fit on number of events

- 3 fit parameters : $(N_{sigr}, N_{RMDr}, N_{BG}), N=N_{sig}+N_{RMD}+N_{BG}$
- 5 observables : $\vec{x} = (E_{\gamma}, E_{e\gamma}, t_{e\gamma}, \theta_{e\gamma}, \phi_{e\gamma})$

relative angle (inverse e^+ direction – γ direction)

- Probability density functions (PDFs) for each event type (S, R, B)
 - Extract PDF from data
 - Use maximum information
 - position dependent for gamma, tracking-quality dependent for positron
- Constrain (N_{RMDr}, N_{BG}) by the independent measurements in sidebands
- Fit in wide region (10σ) to extract signal & background simultaneously
- Different (independent) analysis tools \rightarrow to check, understand, and find bugs
 - Different PDF implementations
 - Different statistical approaches (ex. Frequentist or Bayesian)

Crimean Conf, 4/Sep/2011

- Angle PDFs : signal from measured resolutions, BG from time sideband
 RMD PDF : theoretical distribution ⊗ measured resolutions
- Crimean Conf, 4/Sep/2011

Number of muons

What is the actual measured number of muons ?

Crimean Conf, 4/Sep/2011

- Normalize signal events with number of muon decays counted in control samples
 - Normalization channel 1: Count Michel e+
 - Unbiased Michel trigger data mixed in physics run

$$\frac{\mathcal{B}(\mu^+ \to e^+ \gamma)}{\mathcal{B}(\mu^+ \to e^+ \nu \bar{\nu})} = \frac{N_{\rm sig}}{N_{e\nu\bar{\nu}}} \times \frac{f^e_{e\nu\bar{\nu}}}{P \cdot \epsilon_{\rm pu}} \times \frac{\epsilon^{\rm trig}_{e\nu\bar{\nu}}}{\epsilon^{\rm trig}_{e\gamma}} \times \frac{\epsilon^{\rm DC}_{e\nu\bar{\nu}}}{\epsilon^{\rm DC}_{e\gamma}} \times \frac{1}{A^{\rm geo}_{e\gamma}} \times \frac{1}{\epsilon_{e\gamma}}$$

- Normalization channel 2: Count RMD events
 - In E_{γ} -sideband
- Insensitive to beam-rate or detector-condition variations
- Those two methods are complementary
 - Most of the systematics are independent.
 - Consistency check \rightarrow very good agreement

Normalization factor

$$\mathcal{B}(\mu^+ \rightarrow e^+ \gamma) = N_{sig} / (3.3 \pm 0.2) \times 10^{12}$$

 $(1.1 \times 10^{12}(2009) + 2.2 \times 10^{12}(2010))$

Crimean Conf, 4/Sep/2011

Sensitivity

- Expected upper limit (90%CL) on ensemble of toy-experiments
 - Null signal assumption
 - Toy-experiment: generate events with obtained PDFs
 - Repeat toy-experiments and calculate UL in the same way as real data

Sensitivity of combined data : 1.6×10^{-12}

c.f. Existing best upper limit: 12×10^{-12}

We can search for $\mu \rightarrow e\gamma$ for unexplored region by factor >7 !

Crimean Conf, 4/Sep/2011

Sideband analysis

Sideband analysis

Mu-E-Gamma Collaboration

2009 data update result

Crimean Conf, 4/Sep/2011

2009 data update

Numbers show rank of relative signal likelihood. Same number, same event. (S/(0.1R + 0.9B))

 N_{sig} best-fit value : 3.0 (preliminary result) \rightarrow 3.4

No significant change, result is stable.

Crimean Conf, 4/Sep/2011

- Set confidence interval with Frequentist approach
 - Feldman-Cousins unified method with profile likelihood ratio ordering.

ה ה ה ה ה ה

2010 data

We opened the blind box on Jul. 5...

Crimean Conf, 4/Sep/2011

2010 data unblinded on Jul.5

No events in common.

<u>Upper limit</u>

Frequentist analysis set,

Crimean Conf, 4/Sep/2011

- Systematic effects are taken into account in the calculation of confidence interval by profiling on (N_{RD}, N_{BG}) and by fluctuating PDFs according to the uncertainty values
 - all the results shown so far already contain systematic effect.
- Size of effect of systematic uncertainty is in total 2% on the UL.
 - $2.3 \times 10^{-12} \rightarrow 2.4 \times 10^{-12}$ for combined result

	Center of $\theta_{e\gamma}$ and $\phi_{e\gamma}$	0.18
	Positron correlations	0.16
	Normalization	0.13
	E_{γ} scale	0.07
	$E_{\rm e}$ bias, core and tail	0.06
	$t_{\mathrm{e}\gamma}$ center	0.06
-	E_{γ} BG shape	0.04
	E_{γ} signal shape	0.03
	Positron angle resolutions $(\theta_{\rm e}, \phi_{\rm e}, z_{\rm e}, y_{\rm e})$	0.02
	γ angle resolution $(u_{\gamma}, v_{\gamma}, w_{\gamma})$	0.02
	$E_{\rm e} \ {\rm BG} \ {\rm shape}$	0.02
	$E_{\rm e}$ signal shape	0.01

Relative contributions on UL

Contribution of each item was studied with toy-experiment by comparing the result with nominal PDF and that with fluctuated one.

Crimean Conf, 4/Sep/2011

Prospects

- MEG is running
 - We resumed data-taking since July
 - Will acquire $\times 2$ statistics in this year
 - Improved DAQ & trigger eff.
- We will run at least until 2012
 - To reach our goal of sensitivity at a few×10⁻¹³

- Searched for unexplored region of lepton-flavor violating decay $\mu^+ \rightarrow e^+ \gamma$ with sensitivity 1.6×10^{-12}
- 2009+2010 data is consistent with null signal
- New physics is now constrained by 5× tighter upper limit:

$$\mathcal{B}(\mu^+ \to e^+ \gamma) < 2.4 \times 10^{-12}$$
 @ 90% C.L.
(http://arxiv.org/abs/1107.5547)

MEG is accumulating more data this and next year to reach $O(10^{-13})$ sensitivity.

......

Crimean Conf, 4/Sep/2011

The MEG collaboration

Roma

INFN & U Roma INFN & U Genova INFN & U Pavia INFN & U Lecce

MEG Detector

Crimean Conf, 4/Sep/2011

Summary of performance

	2009	2010
γ energy	1.9%(<i>w</i> ≥2cm) 2.4%((<i>w</i> <2cm)	1.9%(<i>w</i> ≥2cm) 2.4%((<i>w</i> <2cm)
γ timing	96ps	67ps
γ position	5mm(<i>u,v</i>), 6mm(<i>w</i>)	5mm(<i>u,v</i>), 6mm(<i>w</i>)
γ efficiency †	58%	59%
e^+ timing	107ps	107ps
e^+ energy	0.31MeV (core 80%)	0.32MeV (core 79%)
$e^{\scriptscriptstyle +}$ angle ($ heta$)	9.4mrad	11.0mrad
$e^{\scriptscriptstyle +}$ angle (ϕ)	6.7mrad	7.2mrad
<i>e</i> ⁺ vertex (<i>Z/Y</i>)	1.5mm/1.1mm(core)	2.0mm/1.1mm(core)
e^+ efficiency	40%	34%
$e^+ - \gamma$ timing	146ps	122ps
Trigger efficiency	91%	92%
$e^+ - \gamma$ angle (θ)	14.5mrad	17.1mrad
$e^+ - \gamma$ angle (ϕ)	13.1mrad	14.0mrad
Stopping μ rate	2.9 × 10 ⁷ s ^{−1}	2.9 × 10 ⁷ s ^{−1}
DAQ time/ Real time	35days/43days	56days/67days
Total μ stops on target	6.5 × 10 ¹³	1.1 × 10 ¹⁴

 $\dagger \varepsilon_{\text{detection}} \times \varepsilon_{\text{analysis}}$ for E_{γ} >48MeV

e⁺ tracking slightly worse in 2010 due to noise problem

improvement by waveform digitizer upgrade in 2010

Confidence intervals

40

Crimean Conf, 4/Sep/2011

Yusuke UCHIYAMA, the University of Tokyo

• Geometrical effects worsen the effective φ resolution at φ ≠ 0: $\sigma_{\phi} = \sqrt{\sigma_0^2 + (k \tan \phi)^2}$ htemp o(φ) [rad] 0.03 Entries Mean 0.1038 RMS ð/715 parameterization from a simple).025 χ^2/ndf 55.7/31 geometrical model (see note) 0.008831 ± 0.000024 р0 0.01315 ± 0.00005 p1 0.02 0(11 ± 0.00 p2 0.015 0.01 $E_e-E_{e,true}$ vs $\phi-\phi_{tur}$ 0.005 2500 -0.5 0.5 φ [rad] 2000 1500 $\Phi = 0$ o > 0 10 1000 500 0.5 E_p - E^{true}_p [MeV] We know the e⁺ momentum exactly for signal

- direction
 → fit of double-turn positrons
 - track segments reconstructed as due to different particles
 - angular resolution obtained from the difference of the two reconstructions at the turning point

Crimean Conf, 4/Sep/2011

<u>**y**</u> from π^- charge exchange reaction $\pi^- n \rightarrow \pi^0 n$

• liquid H-target

- beam polarity and settings to be changed as well
 - \rightarrow to be used quite seldom (~ 1/year)

Crimean Conf, 4/Sep/2011

(p,y) reaction

>11.7 MeV

- Makes us of a Cockcroft-Walton accelerator to deliver tunableenergy protons to a $Li_2B_4O_7$ target
 - Li: high rate, higher energy photon
 - B: two (lower energy) time-coincident photons >16.1 MeV

Reaction	Eres	σ_{res}	γ-lines	
Li(p, y)Be	440 keV	5 mb	(17.6, 14.6) MeV	4.4 MeV
B(p, y)C	163 keV	2 10 ⁻¹ mb	(4.4, 11.7, 16.1) MeV	

Pileup unfolding

reconstruction of the main clusterreplacement of Npe for pile-up cluster with expected values

